112年專門職業及技術人員高等考試
等 別:高等考試
類 科:電子工程技師
科 目:工程數學(包括線性代數、微分方程、向量分析、複變函數與機率)
解答:L{y″}+4L{y′}+3L{y}=3L{δ(t−2)}⇒s2Y(s)−sy(0)−y′(0)+4(sY(s)−y(0))+3Y(s)=3e−2s⇒(s2+4s+3)Y(s)=3e−2s⇒Y(s)=3e−2ss2+4s+3=32e−2s(1s+1−1s+3)⇒y(t)=L−1(Y(s))⇒y(t)=32u(t−2)(e−(t−2)−e−3(t−2))
解答:半球底面為一圓:x2+y2=1,z=0⇒→r(t)=(cost,sint,0),0≤t≤2π⇒→r′(t)=(−sint,cost,0)dt,又→F=(−y,x,−xyz)=(−sint,cost,0)因此∮C→F⋅d→r=∫2π0(−sint,cost,0)⋅(−sint,cost,0)dt=∫2π0(sin2t+cos2t)dt=∫2π01dt=2π

解答:f1(z)=z2無奇異點⇒Res(f1)=0f2(z)=1z2−16=1(z−4)(z+4)⇒z=±4皆不在圓內⇒Res(f2)=0f3(z)=eπzz2+4=eπz(z+2i)(z−2i)⇒z=±2i皆在圓內⇒Res(f)=Res(f,2i)+Res(f,−2i)=lim

解答:f_Y(y)=\int_y^2f(x,y)\,dx = \int_y^2 {1\over 2}\,dx ={1\over 2}(2-y) \Rightarrow f_{X|Y}(x|y) ={f(x,y)\over f_Y(y)} ={1/2\over (2-y)/2}={1\over 2-y} \\ \Rightarrow E[X\mid Y=y] =\int_y^2 xf_{X|Y}(x,y)\,dx = \int_y^2 {x\over 2-y}\,dx ={4-y^2\over 2(2-y)} =\bbox[red, 2pt]{2+y\over 2}
=========================== END ==============================
解題僅供參考
感謝貢獻
回覆刪除