Loading [MathJax]/jax/element/mml/optable/BasicLatin.js

2024年5月1日 星期三

113年台師大機電碩士班-工程數學詳解

國立臺灣師範大學113學年度碩士班招生考試

程目: 工程數學
適用系所: 機電工程學系 

解答:xy=y2+y1y2+ydy=1xdxlnyy+1=lnx+c1y=c2x1c2xy(2)=2c212c2=4c2=25y=(2/5)x1(2/5)xy=2x52x



解答:(x2D2+2xD6I)y=x2y+2xy6y=0y=xm{y=mxm1y=m(m1)xm2(m2m+2m6)xm=(m2+m6)xm=0(m+3)(m2)xm=0m=2,3y=c1x2+c2x3y=2c1x3c2x4{y(1)=c1+c2=0.5y(1)=2c13c2=1.5{c1=0.6c2=0.1y=0.6x20.1x3

解答:{y1=2y1+3y2y2=4y1y2y=[2341][y1y2]AyA=[2341]=[3/4111][2005][4/74/74/73/7]eAt=[3/4111][e2t00e5t][4/74/74/73/7]=[47e5t+37e2t37e5t+37e2t47e5t+47e2t37e5t+47e2t]y=eAt[c1c2][43]=e0[c1c2]=[c1c2]y=[47e5t+37e2t37e5t+37e2t47e5t+47e2t37e5t+47e2t][43]y=[y1y2]=[e5t+3e2te5t+4e2t]


解答:{2x+2y+3z=42x+3y+az=53x+4y+5z=b[22323a345][xyz]=[45b]Ax=bdet


解答:\textbf{(a)}\; f=x^4+y^2+z \Rightarrow \nabla f=(f_x,f_y,f_z)= (4x^3,2y,1) \Rightarrow \nabla f(4,-1,3)= \bbox[red, 2pt]{(256,-2,1)} \\\textbf{(b)}\; \nabla^2 f =\frac{\partial }{\partial x}f_x + \frac{\partial }{\partial y}f_y + \frac{\partial }{\partial z}f_z  =12x^2+2+0= \bbox[red, 2pt]{12x^2+2} \\ \textbf{(c)}\; \vec v\cdot \nabla f =((x+y)^2,z^2,2yz) \cdot (4x^3,2y,1)= \bbox[red, 2pt]{4x^3(x+y)^2 +2yz^2+ 2yz} \\\textbf{(d)}\; \text{curl }\vec v =\begin{vmatrix}\vec i & \vec j & \vec k \\\frac{\partial  }{\partial x} & \frac{\partial  }{\partial y} & \frac{\partial  }{\partial z} \\ (x+y)^2 & z^2 & 2yz \end{vmatrix} = \bbox[red, 2pt]{-2(x+y) \vec k}  \\ \textbf{(e)} \;\cases{ \nabla f(3,0,2)=(108,0,1) \\ \vec v(3,0,2)= (9,4,0)}\Rightarrow D_v f(3,0,2) =(108,0,1) \cdot {(9,4,0)\over |(9,4,0)|} =\bbox[red, 2pt]{972\over \sqrt{97}}

解答:\textbf{(a)}\; f(-x)=-f(x) \Rightarrow f(x) \text{ is odd} \Rightarrow a_n=0\\ \qquad b_n= {1\over \pi} \left( \int_{-\pi}^0 -\sin(nx) dx+\int_0^\pi \sin(nx)\,dx \right) ={1\over \pi} \left( \left. \left[ {1\over n}\cos(nx) \right] \right|_{-\pi}^0 + \left. \left[ -{1\over n}\cos(nx) \right] \right|_0^\pi\right) \\={1\over \pi} \cdot {2\over n}(1-(-1)^n) ={2\over n\pi}(1-(-1)^n) \Rightarrow \bbox[red, 2pt]{f(x)= \sum_{n=1}^\infty {2\over n\pi}(1-(-1)^n) \sin(nx)} \\ \textbf{(b)}\; f(x)={4\over \pi} \sin x+ {4\over 3\pi} \sin(3x) +{4\over 5\pi} \sin(5x)+\cdots \\\qquad \Rightarrow f({\pi \over 2})= 1={4\over \pi}-{4\over 3\pi}+{4\over 5\pi}-\cdots ={4\over \pi}(1-{1\over3}+ {1\over 5}-{1\over 7}+\cdots )\\ \qquad \Rightarrow 1-{1\over3}+ {1\over 5}-{1\over 7}+\cdots =\bbox[red, 2pt]{\pi\over 4}

==================== END ======================
解題僅供參考,其他歷年試題及詳解

沒有留言:

張貼留言