國立臺灣師範大學113學年度碩士班招生考試
程目: 工程數學
適用系所: 機電工程學系
解答:xy′=y2+y⇒1y2+ydy=1xdx⇒lnyy+1=lnx+c1⇒y=c2x1−c2x⇒y(2)=2c21−2c2=4⇒c2=25⇒y=(2/5)x1−(2/5)x⇒y=2x5−2x

解答:(x2D2+2xD−6I)y=x2y″+2xy′−6y=0y=xm⇒{y′=mxm−1y″=m(m−1)xm−2⇒(m2−m+2m−6)xm=(m2+m−6)xm=0⇒(m+3)(m−2)xm=0⇒m=2,−3⇒y=c1x2+c2x−3⇒y′=2c1x−3c2x−4⇒{y(1)=c1+c2=0.5y′(1)=2c1−3c2=1.5⇒{c1=0.6c2=−0.1⇒y=0.6x2−0.1x−3

解答:{y′1=−2y1+3y2y′2=4y1−y2⇒y′=[−234−1][y1y2]≡AyA=[−234−1]=[3/4−111][200−5][4/74/7−4/73/7]⇒eAt=[3/4−111][e2t00e−5t][4/74/7−4/73/7]=[47e−5t+37e2t−37e−5t+37e2t−47e−5t+47e2t37e−5t+47e2t]⇒y=eAt[c1c2]⇒[43]=e0[c1c2]=[c1c2]⇒y=[47e−5t+37e2t−37e−5t+37e2t−47e−5t+47e2t37e−5t+47e2t][43]⇒y=[y1y2]=[e−5t+3e2t−e−5t+4e2t]
解答:\textbf{(a)}\; f=x^4+y^2+z \Rightarrow \nabla f=(f_x,f_y,f_z)= (4x^3,2y,1) \Rightarrow \nabla f(4,-1,3)= \bbox[red, 2pt]{(256,-2,1)} \\\textbf{(b)}\; \nabla^2 f =\frac{\partial }{\partial x}f_x + \frac{\partial }{\partial y}f_y + \frac{\partial }{\partial z}f_z =12x^2+2+0= \bbox[red, 2pt]{12x^2+2} \\ \textbf{(c)}\; \vec v\cdot \nabla f =((x+y)^2,z^2,2yz) \cdot (4x^3,2y,1)= \bbox[red, 2pt]{4x^3(x+y)^2 +2yz^2+ 2yz} \\\textbf{(d)}\; \text{curl }\vec v =\begin{vmatrix}\vec i & \vec j & \vec k \\\frac{\partial }{\partial x} & \frac{\partial }{\partial y} & \frac{\partial }{\partial z} \\ (x+y)^2 & z^2 & 2yz \end{vmatrix} = \bbox[red, 2pt]{-2(x+y) \vec k} \\ \textbf{(e)} \;\cases{ \nabla f(3,0,2)=(108,0,1) \\ \vec v(3,0,2)= (9,4,0)}\Rightarrow D_v f(3,0,2) =(108,0,1) \cdot {(9,4,0)\over |(9,4,0)|} =\bbox[red, 2pt]{972\over \sqrt{97}}

解答:\textbf{(a)}\; f(-x)=-f(x) \Rightarrow f(x) \text{ is odd} \Rightarrow a_n=0\\ \qquad b_n= {1\over \pi} \left( \int_{-\pi}^0 -\sin(nx) dx+\int_0^\pi \sin(nx)\,dx \right) ={1\over \pi} \left( \left. \left[ {1\over n}\cos(nx) \right] \right|_{-\pi}^0 + \left. \left[ -{1\over n}\cos(nx) \right] \right|_0^\pi\right) \\={1\over \pi} \cdot {2\over n}(1-(-1)^n) ={2\over n\pi}(1-(-1)^n) \Rightarrow \bbox[red, 2pt]{f(x)= \sum_{n=1}^\infty {2\over n\pi}(1-(-1)^n) \sin(nx)} \\ \textbf{(b)}\; f(x)={4\over \pi} \sin x+ {4\over 3\pi} \sin(3x) +{4\over 5\pi} \sin(5x)+\cdots \\\qquad \Rightarrow f({\pi \over 2})= 1={4\over \pi}-{4\over 3\pi}+{4\over 5\pi}-\cdots ={4\over \pi}(1-{1\over3}+ {1\over 5}-{1\over 7}+\cdots )\\ \qquad \Rightarrow 1-{1\over3}+ {1\over 5}-{1\over 7}+\cdots =\bbox[red, 2pt]{\pi\over 4}
沒有留言:
張貼留言