Loading [MathJax]/jax/output/CommonHTML/jax.js

2024年5月1日 星期三

113年中山材料碩士班-工程數學詳解

國立中山大學113學年度碩士班招生考試

科目名稱:工程數學【材料系碩士班】

解答:cotxdy+ydx=01ydy=tanxdxlny=ln(cosx)+c1y(0)=1ln1=ln1+c1c1=0y=cosx

解答:I=ePdxI=PePdx=PII=PIy=IQdx+cIIy=IQdx+cIy+Iy=IQPIy+Iy=IQPy+y=Qdydx+Py=Q.QED

解答:xy+3y=cosxx2x3y+3x2y=cosx(x3y)=cosxx3y=sinx+c1y=sinxx3+c1x3,y(0)=0

解答:x2y4+y+3xy=0y+y3x=x3y4Let v=1y3v=3y4yy=13y4v13y4v+y3x=x3y4vvx=x1xvvx2=1(vx)=1vx=x+c1v=1y3=x2+c1xy=31x2+c1x,y(0)=0

解答:2y+6y20y=0λ2+3λ10=0(λ+5)(λ2)=0λ=2,5yh=c1e2x+c2e5xyp=Ae5xyp=5Ae5xyp=25Ae5xyp+3yp10yp=30Ae5x=60e5xA=2yp=2e5xy=yh+yp=c1e2x+c2e5x+2e5xy=2c1e2x5c2e5x+10e5x{y(0)=c1+c2+2=7y(0)=2c15c2+10=1{c1=2c2=3y=2e2x+3e5x+2e5x



解答:y4y+8y=4e2xλ24λ+8=0λ=2±2iyh=e2x(c1cos(2x)+c2sin(2x))Let {y1=e2xcos(2x)y2=e2xsin(2x), then W=|y1y2y1y2|=2e4x By variations of parameters,yp=e2xcos(2x)e2xsin(2x)4e2xsec(2x)2e4xdx+e2xsin(2x)e2xcos(2x)4e2xsec(2x)2e4xdx=2e2xcos(2x)tan(2x)dx+2e2xsin(2x)1dx=e2xcos(2x)ln(cos(2x))+2xe2xsin(2x)y=yh+yp=e2x(c1cos(2x)+c2sin(2x))+e2xcos(2x)ln(cos(2x))+2xe2xsin(2x)y=e2x((2c1+2c2)cos(2x)+(2c22c1)sin(2x))+2e2x(cos(2x)sin(2x))ln(cos(2x))+4xe2x(sin(2x)+cos(2x)){y(0)=c1=0y(0)=2c1+2c2=0c2=0y=e2xcos(2x)ln(cos(2x))+2xe2xsin(2x)

解答:{x=2x4yy=x3y[xy]=[2413][xy]A=[2413]=[4111][1002][13131343]eAt=[2413]=[4111][et00e2t][13131343]=[43et13e2t43et+43e2t13et13e2t13et+43e2t][xy]=eAt[c1c2][c1c2]=[x(0)=9y(0)=3][xy]=eAt[93]=[8et+e2t2et+e2t]{x=8et+e2ty=2et+e2t

解答:(A)u=txdu=dxt0f(x)g(tx)dx=0tf(tu)g(u)(du)=t0f(tu)g(u)du=t0f(tx)g(x)dx.QED(B)L{fg}=0(t0f(u)g(tu)du)estdt=0(0f(u)g(tu)du)estdt (assume that f(t)=g(t)=0,t<0)=0f(u)(0g(tu)estdt)du=0f(u)(0g(τ)es(τ+u)dτ)du(τ=tu)=0f(u)esu(0g(τ)esτdτ)du=(0f(u)esudu)(0g(τ)esτdτ)=F(s)G(s).QED(C){f(x)=eαxg(x)=sin(ωx)L{t0eαxsin[ω(tx)]dx}=L{f(x)}L{g(x)}=1s+ωωs2+ω2=ω(s+ω)(s2+ω2)

==================== END ======================
解題僅供參考,其他歷年試題及詳解

沒有留言:

張貼留言