國立中山大學113學年度碩士班招生考試
科目名稱:工程數學【材料系碩士班】
解答:cotxdy+ydx=0⇒1ydy=−tanxdx⇒lny=ln(cosx)+c1y(0)=1⇒ln1=ln1+c1⇒c1=0⇒y=cosx

解答:I=e∫Pdx⇒I′=Pe∫Pdx=PI⇒I′=PIy=∫IQdx+cI⇒Iy=∫IQdx+c⇒I′y+Iy′=IQ⇒PIy+Iy′=IQ⇒Py+y′=Q⇒dydx+Py=Q.QED

解答:xy′+3y=cosxx2⇒x3y′+3x2y=cosx⇒(x3y)′=cosx⇒x3y=sinx+c1⇒y=sinxx3+c1x3,初始值y(0)=0有疑義

解答:x2y4+y+3xy′=0⇒y′+y3x=−x3y4Let v=1y3⇒v′=−3y4y′⇒y′=−13y4v′⇒−13y4v′+y3x=−x3y4⇒v′−vx=x⇒1xv′−vx2=1⇒(vx)′=1⇒vx=x+c1⇒v=1y3=x2+c1x⇒y=3√1x2+c1x,初始值y(0)=0有疑義
解答:2y″+6y′−20y=0⇒λ2+3λ−10=0⇒(λ+5)(λ−2)=0⇒λ=2,−5⇒yh=c1e2x+c2e−5xyp=Ae5x⇒y′p=5Ae5x⇒y″p=25Ae5x⇒y″p+3y′p−10yp=30Ae5x=60e5x⇒A=2⇒yp=2e5x⇒y=yh+yp=c1e2x+c2e−5x+2e5x⇒y′=2c1e2x−5c2e−5x+10e5x⇒{y(0)=c1+c2+2=7y′(0)=2c1−5c2+10=−1⇒{c1=2c2=3⇒y=2e2x+3e−5x+2e5x
解答:y″−4y′+8y=4e2x⇒λ2−4λ+8=0⇒λ=2±2i⇒yh=e2x(c1cos(2x)+c2sin(2x))Let {y1=e2xcos(2x)y2=e2xsin(2x), then W=|y1y2y′1y′2|=2e4x By variations of parameters,yp=−e2xcos(2x)∫e2xsin(2x)⋅4e2xsec(2x)2e4xdx+e2xsin(2x)∫e2xcos(2x)⋅4e2xsec(2x)2e4xdx=−2e2xcos(2x)∫tan(2x)dx+2e2xsin(2x)∫1dx=e2xcos(2x)ln(cos(2x))+2xe2xsin(2x)⇒y=yh+yp=e2x(c1cos(2x)+c2sin(2x))+e2xcos(2x)ln(cos(2x))+2xe2xsin(2x)⇒y′=e2x((2c1+2c2)cos(2x)+(2c2−2c1)sin(2x))+2e2x(cos(2x)−sin(2x))ln(cos(2x))+4xe2x(sin(2x)+cos(2x))⇒{y(0)=c1=0y′(0)=2c1+2c2=0⇒c2=0⇒y=e2xcos(2x)ln(cos(2x))+2xe2xsin(2x)
解答:{x′=2x−4yy′=x−3y⇒[x′y′]=[2−41−3][xy]A=[2−41−3]=[4111][100−2][13−13−1343]⇒eAt=[2−41−3]=[4111][et00e−2t][13−13−1343]=[43et−13e−2t−43et+43e−2t13et−13e−2t−13et+43e−2t]⇒[xy]=eAt[c1c2]⇒[c1c2]=[x(0)=9y(0)=3]⇒[xy]=eAt[93]=[8et+e−2t2et+e−2t]⇒{x=8et+e−2ty=2et+e−2t

解答:(A)u=t−x⇒du=−dx⇒∫t0f(x)g(t−x)dx=∫0tf(t−u)g(u)(−du)=∫t0f(t−u)g(u)du=∫t0f(t−x)g(x)dx.QED(B)L{f∗g}=∫∞0(∫t0f(u)g(t−u)du)e−stdt=∫∞0(∫∞0f(u)g(t−u)du)e−stdt (assume that f(t)=g(t)=0,t<0)=∫∞0f(u)(∫∞0g(t−u)e−stdt)du=∫∞0f(u)(∫∞0g(τ)e−s(τ+u)dτ)du(τ=t−u)=∫∞0f(u)e−su(∫∞0g(τ)e−sτdτ)du=(∫∞0f(u)e−sudu)(∫∞0g(τ)e−sτdτ)=F(s)G(s).QED(C){f(x)=e−αxg(x)=sin(ωx)⇒L{∫t0e−αxsin[ω(t−x)]dx}=L{f(x)}L{g(x)}=1s+ω⋅ωs2+ω2=ω(s+ω)(s2+ω2)
==================== END ======================
解題僅供參考,其他歷年試題及詳解
沒有留言:
張貼留言