國立中央大學113學年度碩士班考試入學
所別:光電類
科目:工程數學
解答:(a)W[sin(x),ex]=|sinxexcosxex|=ex(sinx−cosx)≠0, if x=0⇒ linearly independent(b)W[ex,ex+2]=|exex+2exex+2|=0,∀x⇒ linearly dependent解答:y″+5y′+6y=0⇒λ2+5λ+6=0⇒(λ+3)(λ+2)=0⇒λ=−3,−2⇒yh=c1e−2x+c2e−3xyp=Ax2+Bx+C⇒y′p=2Ax+B⇒y″p=2A⇒y″p+5y′p+6yp==6Ax2+(10A+6B)x+2A+5B+6C=2x+1⇒{A=010A+6B=22A+5B+6C=1⇒{A=2B=1/3C=−1/9⇒yp=13x−19⇒y=yh+yp⇒y=c1e−2x+c2e−3x+13x−19
解答:xy″+y′=0⇒(xy′)′=0⇒xy′=c1⇒y′=c1x⇒y=c1lnx+c2
解答:L{x″(t)}+L{x(t)}=L{f(t)}=s2X(s)−sx(0)−x′(0)+X(s)=∫51e−stdt⇒(s2+1)X(s)=1se−s−1se−5s⇒X(s)=1s(s2+1)e−s−1s(s2+1)e−5s⇒x(t)=L−1{X(s)}⇒x(t)=u(t−1)(1−cos(t−1))+u(t−5)(cos(t−5)−1)
解答:f(t)=|t|⇒f(−t)=f(t)⇒f(t) is even ⇒bn=0a0=12∫1−1|t|dt=∫10tdt=12an=∫1−1|t|cos(nπt)dt=2∫10tcos(nπt)dt=2n2π2((−1)n−1)⇒F(f(t))=12+∞∑n=12n2π2((−1)n−1)cos(nπt)dt
解答:The boundary curve will be the circle of radius 2 that is in the plane z=0The parameterization of this curve is, →r=[2cost,2sint,0],0≤t≤2πUsing Stokes' theorem, we have∬S(∇×→F)⋅→ndA=∫2π0→F(→r(t))⋅→r′(t)dt=∫2π0[8cos2tsint,−8costsin2t,0]⋅[−2sint,2cost,0]dt=∫2π0−32cos2tsin2tdt=∫2π0−8sin2(2t)dt=∫2π0−4(1−cos(4t))dt=−8π
解答:A=[−1112−6326−5]⇒A−1=[37112892847328528672717]⇒[x1x2x3]=A−1[−548]=[37112892847328528672717][−548]=[2−1−2]⇒{x1=2x2=−1x3=−2
解答:A=[1−124]⇒det
解答:\textbf{(a)}\; f(t)=\cos^2(2\pi t)= {1\over 2} \cos(4\pi t) +{1\over 2} = {1\over 4}\left( e^{4 \pi t i} +e^{-4\pi t i}\right) +{1\over 2} \\ \Rightarrow F(\omega)={1\over \sqrt{2\pi}} \int_{-\infty}^\infty \left( {1\over 4}\left( e^{4 \pi t i} +e^{-4\pi t i}\right) +{1\over 2} \right) e^{-i\omega t}\,dt \\\qquad ={1\over \sqrt{2\pi}} \int_{-\infty}^\infty \left({1\over 4}e^{-i(\omega-4\pi)t} +{1\over 4}e^{-i(\omega + 4\pi)t} +{1\over 2}e^{-i\omega t}\right)\,dt \\ \qquad ={1\over \sqrt{2\pi}} \left({2\pi \over 4} ( \delta(\omega-4\pi) +\delta(\omega+ 4\pi) +{1 \over 2}\cdot 2\pi \delta(\omega) \right)\\\qquad = \bbox[red, 2pt]{{\sqrt{2\pi} \over 4} (\delta(\omega-4\pi)+ \delta(\omega+4\pi)+2 \delta(\omega)) } \\\textbf{(b)}\; g(t)=\begin{cases} 1 & 0\le t\le 1\\ 0& \text{otherwise }\end{cases} \Rightarrow G(\omega) ={1\over \sqrt{2\pi}} \int_0^1 e^{-i\omega t}\,dt={1\over \sqrt{2\pi}} \left. \left[ {1\over -i\omega} e^{-i\omega t}\right] \right|_0^1 \\\qquad ={1\over \sqrt{2\pi}}\cdot {1\over -i\omega} \left( e^{-i\omega} -1\right) \Rightarrow\bbox[red, 2pt]{ G(\omega)={i\over \omega \sqrt{2\pi}}\left( e^{-i\omega} -1\right)} \\ \quad h(t)= \begin{cases} 1 & 0\le t\le 1/2\\ 0& \text{ otherwise }\end{cases} \Rightarrow H(\omega) ={1\over \sqrt{2\pi}} \int_0^{1/2} e^{-i\omega t}\,dt={1\over \sqrt{2\pi}} \left. \left[ {1\over -i\omega} e^{-i\omega t}\right] \right|_0^{1/2} \\\qquad = {1\over \sqrt{2\pi}}\cdot {1\over -i\omega} \left( e^{-i\omega/2} -1\right) \Rightarrow \bbox[red, 2pt]{H(\omega) = {i\over \omega \sqrt{2\pi}} \left( e^{-i\omega/2} -1\right)}
======================== END =========================
解題僅供參考,其他碩士班歷年考題
沒有留言:
張貼留言