Loading [MathJax]/jax/element/mml/optable/BasicLatin.js

2024年5月29日 星期三

113年中央光電碩士班-工程數學詳解

國立中央大學113學年度碩士班考試入學

所別:光電類
科目:工程數學

解答(a)W[sin(x),ex]=|sinxexcosxex|=ex(sinxcosx)0, if x=0 linearly independent(b)W[ex,ex+2]=|exex+2exex+2|=0,x linearly dependent
解答y+5y+6y=0λ2+5λ+6=0(λ+3)(λ+2)=0λ=3,2yh=c1e2x+c2e3xyp=Ax2+Bx+Cyp=2Ax+Byp=2Ayp+5yp+6yp==6Ax2+(10A+6B)x+2A+5B+6C=2x+1{A=010A+6B=22A+5B+6C=1{A=2B=1/3C=1/9yp=13x19y=yh+ypy=c1e2x+c2e3x+13x19
解答xy+y=0(xy)=0xy=c1y=c1xy=c1lnx+c2
解答L{x(t)}+L{x(t)}=L{f(t)}=s2X(s)sx(0)x(0)+X(s)=51estdt(s2+1)X(s)=1ses1se5sX(s)=1s(s2+1)es1s(s2+1)e5sx(t)=L1{X(s)}x(t)=u(t1)(1cos(t1))+u(t5)(cos(t5)1)
解答f(t)=|t|f(t)=f(t)f(t) is even bn=0a0=1211|t|dt=10tdt=12an=11|t|cos(nπt)dt=210tcos(nπt)dt=2n2π2((1)n1)F(f(t))=12+n=12n2π2((1)n1)cos(nπt)dt
解答The boundary curve will be the circle of radius 2 that is in the plane  z=0The parameterization of this curve is, r=[2cost,2sint,0],0t2πUsing Stokes' theorem, we haveS(×F)ndA=2π0F(r(t))r(t)dt=2π0[8cos2tsint,8costsin2t,0][2sint,2cost,0]dt=2π032cos2tsin2tdt=2π08sin2(2t)dt=2π04(1cos(4t))dt=8π
解答A=[111263265]A1=[37112892847328528672717][x1x2x3]=A1[548]=[37112892847328528672717][548]=[212]{x1=2x2=1x3=2
解答A=[1124]det

解答\textbf{(a)}\; f(t)=\cos^2(2\pi t)= {1\over 2} \cos(4\pi t) +{1\over 2} = {1\over 4}\left( e^{4 \pi t i} +e^{-4\pi t i}\right) +{1\over 2} \\ \Rightarrow F(\omega)={1\over \sqrt{2\pi}} \int_{-\infty}^\infty \left( {1\over 4}\left( e^{4 \pi t i} +e^{-4\pi t i}\right) +{1\over 2} \right) e^{-i\omega t}\,dt \\\qquad ={1\over \sqrt{2\pi}} \int_{-\infty}^\infty \left({1\over 4}e^{-i(\omega-4\pi)t} +{1\over 4}e^{-i(\omega + 4\pi)t} +{1\over 2}e^{-i\omega t}\right)\,dt \\ \qquad ={1\over \sqrt{2\pi}} \left({2\pi \over 4}  ( \delta(\omega-4\pi) +\delta(\omega+ 4\pi)  +{1 \over 2}\cdot 2\pi \delta(\omega) \right)\\\qquad  = \bbox[red, 2pt]{{\sqrt{2\pi} \over 4} (\delta(\omega-4\pi)+ \delta(\omega+4\pi)+2 \delta(\omega)) } \\\textbf{(b)}\; g(t)=\begin{cases} 1 & 0\le t\le 1\\ 0& \text{otherwise }\end{cases} \Rightarrow G(\omega) ={1\over \sqrt{2\pi}} \int_0^1 e^{-i\omega t}\,dt={1\over \sqrt{2\pi}} \left. \left[ {1\over -i\omega} e^{-i\omega t}\right] \right|_0^1 \\\qquad ={1\over \sqrt{2\pi}}\cdot {1\over -i\omega} \left( e^{-i\omega} -1\right) \Rightarrow\bbox[red, 2pt]{ G(\omega)={i\over \omega \sqrt{2\pi}}\left( e^{-i\omega} -1\right)} \\ \quad h(t)= \begin{cases} 1 & 0\le t\le 1/2\\ 0& \text{ otherwise }\end{cases} \Rightarrow H(\omega) ={1\over \sqrt{2\pi}} \int_0^{1/2} e^{-i\omega t}\,dt={1\over \sqrt{2\pi}} \left. \left[ {1\over -i\omega} e^{-i\omega t}\right] \right|_0^{1/2} \\\qquad = {1\over \sqrt{2\pi}}\cdot {1\over -i\omega} \left( e^{-i\omega/2} -1\right) \Rightarrow \bbox[red, 2pt]{H(\omega) = {i\over \omega \sqrt{2\pi}} \left( e^{-i\omega/2} -1\right)}


======================== END =========================

解題僅供參考,其他碩士班歷年考題

沒有留言:

張貼留言