國立雲林科技大學113學年度碩士班招生考試
系所:電子系
科目:工程數學
解答:解答:{P(x,y)=3xy−y2Q(x,y)=x(x−y)⇒{Py=3x−2yQx=2x−y⇒Py≠Qx⇒ Not ExactPy−QxQ=x−yx(x−y)=1x⇒u′=1xu⇒integrating factor u(x)=x⇒{uP=3x2y−xy2uQ=x2(x−y)⇒(uP)y=3x2−2xy=(uQ)x⇒Exact ⇒Φ(x,y)=∫(3x2y−xy2)dx=∫x2(x−y)dy⇒Φ=x3y−12x2y2+ϕ(y)=x3y−12x2y2+ρ(x)⇒x3y−12x2y2+c1=0
解答:y″−2y′+y=0⇒λ2−2λ+1=0⇒(λ−1)2=0⇒λ=1⇒yh=c1ex+c2xexApplying variations of parameters, let{y1=exy2=xex⇒W=|y1y2y′1y′2|=e2x⇒yp=−ex∫xex⋅exx2e2xdx+xex∫ex⋅exx2e2xdx=−ex∫1xdx+xex∫1x2dx=−exlnx−ex⇒y=yh+yp⇒y=c3ex+c2xex−exlnx
解答:(a){y′1=y1+2y2⋯(1)y′2=3y1+2y2⋯(2)⇒y″1=y′1+2y′2=y′1+2(3y1+2y2)=y′1+6y1+4y2⇒y″1−y′1−6y1=4y2=2(y′1−y1)=2y′1−2y1⇒y″1−3y′1−4y1=0⇒y1=c1e4t+c2e−t⇒y′1=4c1e4t−c2e−t⇒2y2=y′1−y1=3c1e4t−2c2e−t⇒y2=32c1e4t−c2e−t⇒{y1=c1e4t+c2e−ty2=32c1e4t−c2e−t
解答:(a){A=[10−1231]B=[120043]⇒A+B=[22−1274]⇒(A+B)T=[2227−14](b)2A−B=[1−2−242−1]⇒(2A−B)C=[−2−1−43](c)A−B=[0−2−12−1−2]⇒4(A−B)=[0−8−48−4−8]2X+4(A−B)=0⇒2X=−4(A−B)=[084−848]⇒X=[042−424]
解答:A=[211121112]⇒det(A−λI)=−(λ−1)2(λ−4)=0⇒λ=1,4λ1=1⇒(A−λ1I)v=0⇒[111111111][x1x2x3]=0⇒x1+x2+x3=0⇒v=x2(−110)+x3(−101),choose v1=(−110),v2=(−101)λ2=4⇒(A−λ2I)v=0⇒[−2111−2111−2][x1x2x3]=0⇒{x1=x3x2=x3⇒v=x3(111) choose v3=(111)⇒eigenvalues: 1,4, and eigenvectors: (−110),(−101),(111)
解答:(a)→A⋅→B=(2,1,−1)⋅(1,3,−1)=2+3+1=6(b)→A×→B=|→i→j→k21−113−1|=2→i+1→j+5→k(c)→A⋅→B|→B|=6√11=6√1111
解答:Let f(x,y,z)=2(x2+y2)−z2⇒∇f=(4x,4y,−2z)⇒∇f(1,0,1)=(4,0,−2)
==================== END ======================
解題僅供參考,其他歷年試題及詳解
沒有留言:
張貼留言