國立臺灣科技大學113學年度碩士班招生試題
系所組別:材料科學與工程系碩士班乙組
科目:工程數學
解答:(1)No,it is nonlinear. It cannot be written in the form of a(x)y′+b(x)y=c(x)(2)(y−4x)dx+(y−x)dy=0⇒{P(x,y)=y−4xQ(x,y)=y−x⇒{Py=1Qx=−1⇒Py≠Qx⇒Not Exact(3){Py−QxQ=2y−x is dependent on both of x,y−Py−QxP=−2y−4x is dependent on both of x,y⇒No,the ODE have no integrating factor I(x) or I(y)(4)xM+yN=−4x2+y2⇒μ(x,y)=1−4x2+y2⇒(μM)y=−4x2+8xy−y2(4x2−y2)2=(μN)x⇒ exact⇒Φ(x,y)=∫4x−y4x2−y2dx=∫x−y4x2−y2dy⇒Φ=14ln(2x−y)(2x+y)3+ϕ(y)=14ln(y−2x)(2x+y)3+ρ(x)⇒ln(2x−y)+3ln(2x+y)=c1


解答:{x1+x3−x4=12x2+x3+x4=3x1−x2+x4=−1x1+x2+x3+x4=2⇒[101−102111−1011111][x1x2x3x4]=[13−12]⇒augmented matrix[101−11021131−101−111112]R3−R1→R3,R4−R1→R4→[101−11021130−1−12−201021]R3+(1/2)R2→R3,R4−(1/2)R2→R4→[101−110211300−1252−1200−1232−12]R4−R3→R4→[101−110211300−1252−12000−10]⇒{x1+x3−x4=12x2+x3+x4=3−12x3+52x4=−12−x4=0⇒x4=0⇒−12x3=−12⇒x3=1⇒2x2+1=3⇒x2=1⇒x1+1=1⇒x1=0⇒{x1=0x2=1x3=1x4=0
解答:{x1+2x2+x3=82x1−2x2+2x3=7x1−4x2+3x3=1⇒[1212−221−43][x1x2x3]=[871]⇒{△=|1212−221−43|=−12△1=|8217−221−43|=−48△2=|181272113|=−18△3=|1282−271−41|=−12⇒{x1=△1/△=−48/−12=4x2=△2/△=−18/−12=3/2x3=△3/△=−12/−12=1⇒{x1=4x2=3/2x3=1解答:A=[160021012]⇒det(A−λI)=−(λ−1)2(λ−3)λ1=1⇒(A−λ1I)v=0⇒[060011011][x1x2x3]=0⇒x2=x3=0⇒v=x1(100), choose v1=(100)λ2=3⇒(A−λ2I)v=0⇒[−2600−1101−1][x1x2x3]=0⇒{x1=3x3x2=x3⇒v=x3(311), choose v2=(311)⇒eigenvalues: 1,3, eigenvectors: (100),(311)
解答:
沒有留言:
張貼留言