Loading [MathJax]/jax/output/CommonHTML/jax.js

2024年5月25日 星期六

113年台科大材料碩士班-工程數學詳解

 國立臺灣科技大學113學年度碩士班招生試題

系所組別:材料科學與工程系碩士班乙組
科目:工程數學

解答(1)No,it is nonlinear. It cannot be written in the form of a(x)y+b(x)y=c(x)(2)(y4x)dx+(yx)dy=0{P(x,y)=y4xQ(x,y)=yx{Py=1Qx=1PyQxNot Exact(3){PyQxQ=2yx is dependent on both of x,yPyQxP=2y4x is dependent on both of x,yNo,the ODE have no integrating factor I(x) or I(y)(4)xM+yN=4x2+y2μ(x,y)=14x2+y2(μM)y=4x2+8xyy2(4x2y2)2=(μN)x exactΦ(x,y)=4xy4x2y2dx=xy4x2y2dyΦ=14ln(2xy)(2x+y)3+ϕ(y)=14ln(y2x)(2x+y)3+ρ(x)ln(2xy)+3ln(2x+y)=c1



解答{y(0)=c1=2y(2π)=c1=2y=2cos(2x)+c2sin(2x)There are infinitely many solutions with different c2

解答y=vexy=vex+vexy=vex+2vex+vex(x1)(vex+2vex+vex)x(vex+vex)+vex=0(x1)v+(x2)v=0v=2xx1vv=c1(x1)exv=c1xex+c2y=c1x+c2ex

解答(1)f(t)=t(u(t)u(t2))+u(t2)f(t)=tu(t)+(1t)u(t2)(2)L{f(t)}=0f(t)estdt=20testdt+2estdt=[1stest1s2est]|20+[1sest]|2=1s22se2s1s2e2s+1se2sL{f(t)}=1s21se2s1s2e2s(3)L{y}+L{y}=L{f(t)}sY(s)1+Y(s)=1s21se2s1s2e2sY(s)=1(s+1)s21s(s+1)e2s1(s+1)s2e2s+1s+1y(t)=L1{Y(s)}=1+t+etu(t2)(1e2t)u(t2)(t3+e2t)+ety(t)=1+t+2etu(t2)(t2)

解答{x1+x3x4=12x2+x3+x4=3x1x2+x4=1x1+x2+x3+x4=2[1011021111011111][x1x2x3x4]=[1312]augmented matrix[10111021131101111112]R3R1R3,R4R1R4[10111021130112201021]R3+(1/2)R2R3,R4(1/2)R2R4[10111021130012521200123212]R4R3R4[10111021130012521200010]{x1+x3x4=12x2+x3+x4=312x3+52x4=12x4=0x4=012x3=12x3=12x2+1=3x2=1x1+1=1x1=0{x1=0x2=1x3=1x4=0

解答{x1+2x2+x3=82x12x2+2x3=7x14x2+3x3=1[121222143][x1x2x3]=[871]{=|121222143|=121=|821722143|=482=|181272113|=183=|128227141|=12{x1=1/=48/12=4x2=2/=18/12=3/2x3=3/=12/12=1{x1=4x2=3/2x3=1

解答A=[160021012]det(AλI)=(λ1)2(λ3)λ1=1(Aλ1I)v=0[060011011][x1x2x3]=0x2=x3=0v=x1(100), choose v1=(100)λ2=3(Aλ2I)v=0[260011011][x1x2x3]=0{x1=3x3x2=x3v=x3(311), choose v2=(311)eigenvalues: 1,3, eigenvectors: (100),(311)

解答

沒有留言:

張貼留言