Loading [MathJax]/jax/element/mml/optable/BasicLatin.js

2024年5月7日 星期二

113年台科大自動控制碩士班-工程數學詳解

 國立臺灣科技大學113學年度碩士班招生試題

系所組別:自動化及控制研究所碩士班
科目:工程數學

解答y=xy2xy=x(y2y)1y2ydy=xdx(1y11y)dy=xdxln(y1)lny=lny1y=12x2+c1y1y=11y=c2ex2/21y=1c2ex2/2y=11c2ex2/2

解答y=xm{y=mxm1y=m(m1)xm2x2y5xy+10y=(m26m+10)xm=0m=3±iy=x3(c1cos(lnx)+c2sin(lnx))y=3x2(c1cos(lnx)+c2sin(lnx))+x3(c21xsin(lnx)+c21xcos(lnx)){y(1)=c1=4y(1)=3c1+c2=6c2=18y=x3(4cos(lnx)18sin(lnx))

解答{3xy=2tx+yy=0{3L{x}L{y}=2L{t}L{x}+L{y}L{y}{3sX(s)Y(s)=2/s2(1)sX(s)+sY(s)Y(s)=0(2)(1)3×(2)(23s)Y(s)=2s2Y(s)=2s2(23s)=321s+1s2321s2/3y(t)=L1{Y(s)}y(t)=32+t32e2t/3(2)X(s)=1ssY(s)=2(1s)s3(23s)=34s+12s2+1s334(s2/3)x(t)=L1{X(s)}x(t)=34+t2+t2234e2t/3

解答y=n=0anxn{y=n=0nanxn1x2y=n=0anxn+2(1x2)y=n=0(anan2)xn,an=0,n<0y+(1x2)y=n=0(anan2+(n+1)an+1)xn=x{a0+a1=0a1+2a2=1a2a0+3a3=0anan2+(n+1)an+1=0,n2{a1=a0a2=12(1+a0)a3=16(a01)a4=124(17a0)y=a0a0x+12(1+a0)x216(1a0)x3+124(17a0)x4+

解答u(a,0)u(a,y)u(x,y)=X(x)Y(y)uxx+uyy=XY+XY=0YY=XX=λ{u(0,y)=X(0)Y(y)=0u(a,y)=X(a)Y(y)=0{X(0)=0X(a)=0Case I λ=0X=0X=c1x+c2{X(0)=c2=0X(a)=c1a+c2=0c1=c2=0X=0u=0Case II λ=ρ2>0Xρ2X=0X=c1eρx+c2eρ=0{X(0)=c1+c2=0X(a)=c1eaρ+c2eaρ=0c2=c1c1e2aρc1=c1(e2aρ1)=0c1=0c2=0X=0u=0Case III λ=ρ2<0X+ρ2X=0X=c1cos(ρx)+c2sin(ρx)X(0)=c1=0X(a)=c2sin(aρ)=0sin(aρ)=0aρ=nπρ=nπaX=sin(nπxa),n=1,2,YY=λ=ρ2Yρ2Y=0Y=c1coshnπya+c2sinhnπyau(x,0)=X(x)Y(0)=0Y(0)=0c1=0Y=c2sinhnπyau(x,y)=n=1Ansinhnπyasin(nπxa)u(x,b)=f(x)=n=1Ansinhnπbasin(nπxa)Ansinhnπba=2aa0f(x)sin(nπxa)dxAn=2asinhnπbaa0f(x)sin(nπxa)dx


解答A=[011101110]det
解答a_0={1\over 2\pi} \int_0^h 1\,dt ={h\over 2\pi}\\ a_n= {1\over \pi} \int_0^h  \cos(nt)\,dt ={1\over \pi}\left( \left. \left[{1\over n}\sin(nt) \right] \right|_0^h\right) ={1\over n\pi} \sin(nh),n\in \mathbb N \\ b_n= {1\over \pi}\int_0^h \sin(nt)\,dt ={1\over n\pi}(1-\cos(nh)), n\in \mathbb N \\ f(t)=a_0+ \sum_{n=1}^\infty (a_n\cos(nt)+b_n\sin(nt) ) \\={h\over 2\pi} + \sum_{n=1}^\infty \left( {1\over n\pi} \sin(nh)\cos(nt)+{1\over n\pi}(1-\cos(nh)) \sin(nt) \right) \\\Rightarrow\bbox[red, 2pt]{ f(t)={h\over 2\pi^2}+ \sum_{n=1}^\infty{1\over n}\left( \sin(nh-nt) + \sin(nt)\right) }
解答F(\omega)=\int_{-\infty}^\infty f(x)e^{-j\omega x}\,dx =\int_{-a}^a 2e^{-j\omega x}\,dx =\left. \left[ {2\over -j\omega} e^{-j\omega x} \right] \right|_{-a}^a ={2\over -j\omega}\left( e^{-j\omega a} -e^{j\omega a}\right) \\\qquad ={2\over j\omega} (e^{j\omega a}-e^{-j \omega a})={2\over j\omega}\cdot 2\sin(\omega a)\cdot j =\bbox[red, 2pt]{4\sin(\omega a) \over \omega}

==================== END ======================
解題僅供參考,其他歷年試題及詳解

沒有留言:

張貼留言