國立臺灣科技大學113學年度碩士班招生試題
系所組別:自動化及控制研究所碩士班
科目:工程數學
解答:y′=xy2−xy=x(y2−y)⇒1y2−ydy=xdx⇒∫(1y−1−1y)dy=∫xdx⇒ln(y−1)−lny=lny−1y=12x2+c1⇒y−1y=1−1y=c2ex2/2⇒1y=1−c2ex2/2⇒y=11−c2ex2/2

解答:y=xm⇒{y′=mxm−1y″=m(m−1)xm−2⇒x2y″−5xy′+10y=(m2−6m+10)xm=0⇒m=3±i⇒y=x3(c1cos(lnx)+c2sin(lnx))⇒y′=3x2(c1cos(lnx)+c2sin(lnx))+x3(−c21xsin(lnx)+c21xcos(lnx))⇒{y(1)=c1=4y′(1)=3c1+c2=−6⇒c2=−18⇒y=x3(4cos(lnx)−18sin(lnx))

解答:{3x′−y=2tx′+y′−y=0⇒{3L{x′}−L{y}=2L{t}L{x′}+L{y′}−L{y}⇒{3sX(s)−Y(s)=2/s2⋯(1)sX(s)+sY(s)−Y(s)=0⋯(2)(1)−3×(2)⇒(2−3s)Y(s)=2s2⇒Y(s)=2s2(2−3s)=32⋅1s+1s2−32⋅1s−2/3⇒y(t)=L−1{Y(s)}⇒y(t)=32+t−32e2t/3(2)⇒X(s)=1−ssY(s)=2(1−s)s3(2−3s)=34s+12s2+1s3−34(s−2/3)⇒x(t)=L−1{X(s)}⇒x(t)=34+t2+t22−34e2t/3

解答:y=∞∑n=0anxn⇒{y′=∑∞n=0nanxn−1x2y=∑∞n=0anxn+2⇒(1−x2)y=∞∑n=0(an−an−2)xn,an=0,∀n<0⇒y′+(1−x2)y=∞∑n=0(an−an−2+(n+1)an+1)xn=x⇒{a0+a1=0a1+2a2=1a2−a0+3a3=0an−an−2+(n+1)an+1=0,n≥2⇒{a1=−a0a2=12(1+a0)a3=16(a0−1)a4=124(1−7a0)⇒y=a0−a0x+12(1+a0)x2−16(1−a0)x3+124(1−7a0)x4+⋯
解答:A=[011101110]⇒det
解答:a_0={1\over 2\pi} \int_0^h 1\,dt ={h\over 2\pi}\\ a_n= {1\over \pi} \int_0^h \cos(nt)\,dt ={1\over \pi}\left( \left. \left[{1\over n}\sin(nt) \right] \right|_0^h\right) ={1\over n\pi} \sin(nh),n\in \mathbb N \\ b_n= {1\over \pi}\int_0^h \sin(nt)\,dt ={1\over n\pi}(1-\cos(nh)), n\in \mathbb N \\ f(t)=a_0+ \sum_{n=1}^\infty (a_n\cos(nt)+b_n\sin(nt) ) \\={h\over 2\pi} + \sum_{n=1}^\infty \left( {1\over n\pi} \sin(nh)\cos(nt)+{1\over n\pi}(1-\cos(nh)) \sin(nt) \right) \\\Rightarrow\bbox[red, 2pt]{ f(t)={h\over 2\pi^2}+ \sum_{n=1}^\infty{1\over n}\left( \sin(nh-nt) + \sin(nt)\right) }
解答:F(\omega)=\int_{-\infty}^\infty f(x)e^{-j\omega x}\,dx =\int_{-a}^a 2e^{-j\omega x}\,dx =\left. \left[ {2\over -j\omega} e^{-j\omega x} \right] \right|_{-a}^a ={2\over -j\omega}\left( e^{-j\omega a} -e^{j\omega a}\right) \\\qquad ={2\over j\omega} (e^{j\omega a}-e^{-j \omega a})={2\over j\omega}\cdot 2\sin(\omega a)\cdot j =\bbox[red, 2pt]{4\sin(\omega a) \over \omega}
==================== END ======================
解題僅供參考,其他歷年試題及詳解
沒有留言:
張貼留言