國立臺灣科技大學113學年度碩士班招生試題
系所組別:自動化及控制研究所碩士班
科目:工程數學
解答:y′=xy2−xy=x(y2−y)⇒1y2−ydy=xdx⇒∫(1y−1−1y)dy=∫xdx⇒ln(y−1)−lny=lny−1y=12x2+c1⇒y−1y=1−1y=c2ex2/2⇒1y=1−c2ex2/2⇒y=11−c2ex2/2

解答:y=xm⇒{y′=mxm−1y″=m(m−1)xm−2⇒x2y″−5xy′+10y=(m2−6m+10)xm=0⇒m=3±i⇒y=x3(c1cos(lnx)+c2sin(lnx))⇒y′=3x2(c1cos(lnx)+c2sin(lnx))+x3(−c21xsin(lnx)+c21xcos(lnx))⇒{y(1)=c1=4y′(1)=3c1+c2=−6⇒c2=−18⇒y=x3(4cos(lnx)−18sin(lnx))

解答:{3x′−y=2tx′+y′−y=0⇒{3L{x′}−L{y}=2L{t}L{x′}+L{y′}−L{y}⇒{3sX(s)−Y(s)=2/s2⋯(1)sX(s)+sY(s)−Y(s)=0⋯(2)(1)−3×(2)⇒(2−3s)Y(s)=2s2⇒Y(s)=2s2(2−3s)=32⋅1s+1s2−32⋅1s−2/3⇒y(t)=L−1{Y(s)}⇒y(t)=32+t−32e2t/3(2)⇒X(s)=1−ssY(s)=2(1−s)s3(2−3s)=34s+12s2+1s3−34(s−2/3)⇒x(t)=L−1{X(s)}⇒x(t)=34+t2+t22−34e2t/3

解答:y=∞∑n=0anxn⇒{y′=∑∞n=0nanxn−1x2y=∑∞n=0anxn+2⇒(1−x2)y=∞∑n=0(an−an−2)xn,an=0,∀n<0⇒y′+(1−x2)y=∞∑n=0(an−an−2+(n+1)an+1)xn=x⇒{a0+a1=0a1+2a2=1a2−a0+3a3=0an−an−2+(n+1)an+1=0,n≥2⇒{a1=−a0a2=12(1+a0)a3=16(a0−1)a4=124(1−7a0)⇒y=a0−a0x+12(1+a0)x2−16(1−a0)x3+124(1−7a0)x4+⋯
解答:A=[011101110]⇒det(A−λI)=−(λ+1)2(λ−2)=0⇒ eigenvalue λ=−1,2λ1=−1⇒(A−λ1I)v=0⇒[111111111][x1x2x3]=0⇒x1+x2+x3=0⇒v=x2(−110)+x3(−101), choose v1=(−110),v2=(−101)λ2=2⇒(A−λ2I)v=0⇒[−2111−2111−2][x1x2x3]=0⇒{x1=x3x2=x3⇒v=x3(111), choose v3=(111)⇒P=[v1∣v2∣v3]=[−1−11101011]⇒P−1=[−1323−13−13−1323131313]⇒A=[−1−11101011][−1000−10001][−1323−13−13−1323131313]
解答:a0=12π∫h01dt=h2πan=1π∫h0cos(nt)dt=1π([1nsin(nt)]|h0)=1nπsin(nh),n∈Nbn=1π∫h0sin(nt)dt=1nπ(1−cos(nh)),n∈Nf(t)=a0+∞∑n=1(ancos(nt)+bnsin(nt))=h2π+∞∑n=1(1nπsin(nh)cos(nt)+1nπ(1−cos(nh))sin(nt))⇒f(t)=h2π2+∞∑n=11n(sin(nh−nt)+sin(nt))
解答:F(ω)=∫∞−∞f(x)e−jωxdx=∫a−a2e−jωxdx=[2−jωe−jωx]|a−a=2−jω(e−jωa−ejωa)=2jω(ejωa−e−jωa)=2jω⋅2sin(ωa)⋅j=4sin(ωa)ω
==================== END ======================
解題僅供參考,其他歷年試題及詳解
沒有留言:
張貼留言