Loading [MathJax]/jax/output/CommonHTML/jax.js

2024年5月7日 星期二

113年台科大自動控制碩士班-工程數學詳解

 國立臺灣科技大學113學年度碩士班招生試題

系所組別:自動化及控制研究所碩士班
科目:工程數學

解答y=xy2xy=x(y2y)1y2ydy=xdx(1y11y)dy=xdxln(y1)lny=lny1y=12x2+c1y1y=11y=c2ex2/21y=1c2ex2/2y=11c2ex2/2

解答y=xm{y=mxm1y=m(m1)xm2x2y5xy+10y=(m26m+10)xm=0m=3±iy=x3(c1cos(lnx)+c2sin(lnx))y=3x2(c1cos(lnx)+c2sin(lnx))+x3(c21xsin(lnx)+c21xcos(lnx)){y(1)=c1=4y(1)=3c1+c2=6c2=18y=x3(4cos(lnx)18sin(lnx))

解答{3xy=2tx+yy=0{3L{x}L{y}=2L{t}L{x}+L{y}L{y}{3sX(s)Y(s)=2/s2(1)sX(s)+sY(s)Y(s)=0(2)(1)3×(2)(23s)Y(s)=2s2Y(s)=2s2(23s)=321s+1s2321s2/3y(t)=L1{Y(s)}y(t)=32+t32e2t/3(2)X(s)=1ssY(s)=2(1s)s3(23s)=34s+12s2+1s334(s2/3)x(t)=L1{X(s)}x(t)=34+t2+t2234e2t/3

解答y=n=0anxn{y=n=0nanxn1x2y=n=0anxn+2(1x2)y=n=0(anan2)xn,an=0,n<0y+(1x2)y=n=0(anan2+(n+1)an+1)xn=x{a0+a1=0a1+2a2=1a2a0+3a3=0anan2+(n+1)an+1=0,n2{a1=a0a2=12(1+a0)a3=16(a01)a4=124(17a0)y=a0a0x+12(1+a0)x216(1a0)x3+124(17a0)x4+

解答u(a,0)u(a,y)u(x,y)=X(x)Y(y)uxx+uyy=XY+XY=0YY=XX=λ{u(0,y)=X(0)Y(y)=0u(a,y)=X(a)Y(y)=0{X(0)=0X(a)=0Case I λ=0X=0X=c1x+c2{X(0)=c2=0X(a)=c1a+c2=0c1=c2=0X=0u=0Case II λ=ρ2>0Xρ2X=0X=c1eρx+c2eρ=0{X(0)=c1+c2=0X(a)=c1eaρ+c2eaρ=0c2=c1c1e2aρc1=c1(e2aρ1)=0c1=0c2=0X=0u=0Case III λ=ρ2<0X+ρ2X=0X=c1cos(ρx)+c2sin(ρx)X(0)=c1=0X(a)=c2sin(aρ)=0sin(aρ)=0aρ=nπρ=nπaX=sin(nπxa),n=1,2,YY=λ=ρ2Yρ2Y=0Y=c1coshnπya+c2sinhnπyau(x,0)=X(x)Y(0)=0Y(0)=0c1=0Y=c2sinhnπyau(x,y)=n=1Ansinhnπyasin(nπxa)u(x,b)=f(x)=n=1Ansinhnπbasin(nπxa)Ansinhnπba=2aa0f(x)sin(nπxa)dxAn=2asinhnπbaa0f(x)sin(nπxa)dx


解答A=[011101110]det(AλI)=(λ+1)2(λ2)=0 eigenvalue λ=1,2λ1=1(Aλ1I)v=0[111111111][x1x2x3]=0x1+x2+x3=0v=x2(110)+x3(101), choose v1=(110),v2=(101)λ2=2(Aλ2I)v=0[211121112][x1x2x3]=0{x1=x3x2=x3v=x3(111), choose v3=(111)P=[v1v2v3]=[111101011]P1=[132313131323131313]A=[111101011][100010001][132313131323131313]
解答a0=12πh01dt=h2πan=1πh0cos(nt)dt=1π([1nsin(nt)]|h0)=1nπsin(nh),nNbn=1πh0sin(nt)dt=1nπ(1cos(nh)),nNf(t)=a0+n=1(ancos(nt)+bnsin(nt))=h2π+n=1(1nπsin(nh)cos(nt)+1nπ(1cos(nh))sin(nt))f(t)=h2π2+n=11n(sin(nhnt)+sin(nt))
解答F(ω)=f(x)ejωxdx=aa2ejωxdx=[2jωejωx]|aa=2jω(ejωaejωa)=2jω(ejωaejωa)=2jω2sin(ωa)j=4sin(ωa)ω

==================== END ======================
解題僅供參考,其他歷年試題及詳解

沒有留言:

張貼留言