國立臺灣科技大學113學年度碩士班招生考試
系所組別: 機械工程系碩士班甲組
科目:工程數學
解答:(1)[A∣I]=[143100212010122001]R2−2R1→R2,R3−R1→R3→[1431000−7−4−2100−2−1−101]−(1/7)R2→R2→[143100014727−1700−2−1−101]R1−4R2→R1,R3+2R2→R3→[1057−17470014727−1700017−37−271]7R3→R3→[1057−17470014727−170001−3−27b]R1−(5/7)R3→R1,R2−(4/7)R3→R2→[10022−501021−4001−3−27]⇒A−1=[22−521−4−3−27](2)A=[143212122]R2−2R1→R2,R3−R1→R3→[1430−7−40−2−1]R3−(2/7)R2→R3→[1430−7−40017]⇒U=[1430−7−40017]⇒L=[100a10bc1]⇒A=LU=[143a4a−73a−4b4b−7c3b−4c+17]⇒{a=2b=1c=2/7⇒A=LU=[10021012/71][1430−7−40017]
解答:(1)L{y″}+L{y}=L{δ(t−2π)}⇒s2Y(s)−s+Y(s)=e−2πs⇒Y(s)=e−2πs+ss2+1⇒y(t)=L−1{Y(s)}=L−1{e−2πss2+1}+L−1{ss2+1}⇒y(t)=u(t−2π)sin(t−2π)+cos(t)(2)y″−2y′+y=0⇒(λ−1)2=0⇒λ=1⇒yh=c1ex+c2xexyp=Ax2ex⇒y′p=2Axex+Ax2ex⇒y″p=2Aex+4Axex+Ax2ex⇒y″p−2y′p+yp=2Aex=ex⇒A=12⇒yp=12x2ex⇒y=yh+yp⇒y=c1ex+c2xex+12x2ex(3)(xy)dydx=2y2+3x2⇒(2y2+3x2)dx+(−xy)dy=0⇒{P(x,y)=2y2+3x2Q(x,y)=−xy⇒{Py=4yQx=−y⇒Py−QxQ=−5x⇒u′=−5xu⇒integration facotr u=1x5⇒{uP=2y2x5+3x3uQ=−yx4⇒(uP)y=4yx5=(uQ)x⇒Exact⇒Φ(x,y)=∫(2y2x5+3x3)dx=∫−yx4dy⇒y22x4+32x2+c1=0⇒y2x4=c2−3x2⇒y=±x√c2x2−3解答:{A(1,1,1)B(5,−7,3)C(7,4,8)D(10,7,4)⇒{→AB=(4,−8,2)→AC=(6,3,7)→AD=(9,6,3)⇒V=16‖4−82637963‖=4746=79
解答:(1)S1:→r(u,v)=(ucosv,usinv,b),0≤v≤2π,0≤u≤a⇒{→tu=(cosv,sinv,0)→tv=(−usinv,ucosv,0)⇒→tu×→tv=(0,0,u)⇒∬S1→F⋅d→S=∫2π0∫a0(u3cos3v,u3cos2vsinv,bu2cos2v)⋅(0,0,u)dudv=∫2π0∫a0bu3cos2vdudv=∫2π0a4b4cos2vdv=∫2π0a4b4⋅12(cos2v+1)dv=a4b8⋅2π=a4b4πS2:→r(u,v)=(acosv,asinv,u),0≤v≤2π,0≤u≤b⇒{→tu=(0,0,1)→tv=(−asinv,acosv,0)⇒→tu×→tv=(−acosv,−asinv,0)⇒ we choose →tu×→tv=(acosv,asinv,0)⇒∬S2→F⋅d→S=∫2π0∫b0(a3cos3v,a3cos2vsinv,a2ucos2v)⋅(acosv,asinv,0)dudv=∫2π0∫b0a4cos2vdudv=∫2π0a4bcos2vdv=∫2π0a4b2(1+cos2v)dv=a4bπS3:→r(u,v)=(ucosv,usinv,0),0≤v≤2π,0≤u≤a⇒{→tu=(cosv,sinv,0)→tv=(−usinv,ucosv,0)⇒→tu×→tv=(0,0,u)⇒∬S3→F⋅d→S=∫2π0∫a00dudv=0⇒∬S→F⋅d→S=∬S1→F⋅d→S+∬S2→F⋅d→S+∬S3→F⋅d→S=a4b4π+a4bπ+0=54a4bπ(2)→F=(x3,x2y,x2z)⇒∇⋅→F=3x2+x2+x2=5x2⇒I=∭R∇⋅→FdV=∭R5x2dV, where R={(r,θ,z)∣0≤r≤a,0≤θ≤2π,0≤z≤b}{x=rcosθy=rsinθz=z⇒I=∫2π0∫b0∫a05r3cos2θdrdzdθ=∫2π0∫b054a4cos2θdzdθ=∫2π054a4bcos2θdθ=58a4b∫2π0(cos(2θ)+1)dθ=54a4bπ
解答:u(x,t)=X(x)T(t)⇒∂u∂t=c2∂2u∂x2⇒XT′=c2X″T⇒T′c2T=X″XBC:{u(0,t)=0u(L,t)=0⇒{X(0)T(t)=0X(L)T(t)=0⇒{X(0)=0X(L)=0Let T′c2T=X″X=λCase I λ=0⇒X″=0⇒X=c1x+c2⇒BC:{X(0)=c2=0X(L)=c1L+c2=0⇒{c1=0c2=0⇒X=0Case II λ=ρ2>0⇒X″−ρ2X=0⇒X=c1eρx+c2e−ρx⇒BC:{X(0)=c1+c2=0X(L)=c1eρL+c2e−ρL=0⇒c1eρL−c1e−ρL=0⇒c1(e2ρL−1)=0⇒c1=0⇒c2=0⇒X=0Case III λ=−ρ2<0⇒X2+ρ2X=0⇒X=c1cos(ρx)+c2sin(ρx)⇒BC:{X(0)=c1=0X(L)=c2sin(ρL)=0⇒ρL=nπ⇒ρ=nπL⇒Xn=sinnπxL,n∈N⇒T′=λc2T=−n2c2π2L2T⇒Tn=e−n2c2π2 t/L2,n∈N⇒u(x,t)=∞∑n=1AnsinnπxLe−n2c2π2 t/L2⇒u(x,0)=f(x)=∞∑n=1AnsinnπxL⇒An=2L∫L0f(x)sinnπxLdx=2L(∫L/20xsinnπxLdx+∫LL/2(L−x)sinnπxLdx)=2L⋅L2n2π2sinnπ2=2Ln2π2sinnπ2⇒u(x,t)=∞∑n=1AnsinnπxLe−n2c2π2 t/L2,An=2Ln2π2sinnπ2
==================== END ======================
解題僅供參考,其他歷年試題及詳解
沒有留言:
張貼留言