Loading [MathJax]/jax/output/CommonHTML/jax.js

2024年5月11日 星期六

113年台科大機械碩士班甲-工程數學詳解

國立臺灣科技大學113學年度碩士班招生考試

系所組別: 機械工程系碩士班甲組
科目:工程數學

解答:(1)[AI]=[143100212010122001]R22R1R2,R3R1R3[143100074210021101](1/7)R2R2[143100014727170021101]R14R2R1,R3+2R2R3[105717470014727170001737271]7R3R3[105717470014727170001327b]R1(5/7)R3R1,R2(4/7)R3R2[100225010214001327]A1=[225214327](2)A=[143212122]R22R1R2,R3R1R3[143074021]R3(2/7)R2R3[1430740017]U=[1430740017]L=[100a10bc1]A=LU=[143a4a73a4b4b7c3b4c+17]{a=2b=1c=2/7A=LU=[10021012/71][1430740017]
解答:(1)L{y}+L{y}=L{δ(t2π)}s2Y(s)s+Y(s)=e2πsY(s)=e2πs+ss2+1y(t)=L1{Y(s)}=L1{e2πss2+1}+L1{ss2+1}y(t)=u(t2π)sin(t2π)+cos(t)(2)y2y+y=0(λ1)2=0λ=1yh=c1ex+c2xexyp=Ax2exyp=2Axex+Ax2exyp=2Aex+4Axex+Ax2exyp2yp+yp=2Aex=exA=12yp=12x2exy=yh+ypy=c1ex+c2xex+12x2ex(3)(xy)dydx=2y2+3x2(2y2+3x2)dx+(xy)dy=0{P(x,y)=2y2+3x2Q(x,y)=xy{Py=4yQx=yPyQxQ=5xu=5xuintegration facotr u=1x5{uP=2y2x5+3x3uQ=yx4(uP)y=4yx5=(uQ)xExactΦ(x,y)=(2y2x5+3x3)dx=yx4dyy22x4+32x2+c1=0y2x4=c23x2y=±xc2x23
解答:{A(1,1,1)B(5,7,3)C(7,4,8)D(10,7,4){AB=(4,8,2)AC=(6,3,7)AD=(9,6,3)V=16482637963=4746=79
解答:(1)S1:r(u,v)=(ucosv,usinv,b),0v2π,0ua{tu=(cosv,sinv,0)tv=(usinv,ucosv,0)tu×tv=(0,0,u)S1FdS=2π0a0(u3cos3v,u3cos2vsinv,bu2cos2v)(0,0,u)dudv=2π0a0bu3cos2vdudv=2π0a4b4cos2vdv=2π0a4b412(cos2v+1)dv=a4b82π=a4b4πS2:r(u,v)=(acosv,asinv,u),0v2π,0ub{tu=(0,0,1)tv=(asinv,acosv,0)tu×tv=(acosv,asinv,0) we choose tu×tv=(acosv,asinv,0)S2FdS=2π0b0(a3cos3v,a3cos2vsinv,a2ucos2v)(acosv,asinv,0)dudv=2π0b0a4cos2vdudv=2π0a4bcos2vdv=2π0a4b2(1+cos2v)dv=a4bπS3:r(u,v)=(ucosv,usinv,0),0v2π,0ua{tu=(cosv,sinv,0)tv=(usinv,ucosv,0)tu×tv=(0,0,u)S3FdS=2π0a00dudv=0SFdS=S1FdS+S2FdS+S3FdS=a4b4π+a4bπ+0=54a4bπ(2)F=(x3,x2y,x2z)F=3x2+x2+x2=5x2I=RFdV=R5x2dV, where R={(r,θ,z)0ra,0θ2π,0zb}{x=rcosθy=rsinθz=zI=2π0b0a05r3cos2θdrdzdθ=2π0b054a4cos2θdzdθ=2π054a4bcos2θdθ=58a4b2π0(cos(2θ)+1)dθ=54a4bπ
解答:u(x,t)=X(x)T(t)ut=c22ux2XT=c2XTTc2T=XXBC:{u(0,t)=0u(L,t)=0{X(0)T(t)=0X(L)T(t)=0{X(0)=0X(L)=0Let Tc2T=XX=λCase I λ=0X=0X=c1x+c2BC:{X(0)=c2=0X(L)=c1L+c2=0{c1=0c2=0X=0Case II λ=ρ2>0Xρ2X=0X=c1eρx+c2eρxBC:{X(0)=c1+c2=0X(L)=c1eρL+c2eρL=0c1eρLc1eρL=0c1(e2ρL1)=0c1=0c2=0X=0Case III λ=ρ2<0X2+ρ2X=0X=c1cos(ρx)+c2sin(ρx)BC:{X(0)=c1=0X(L)=c2sin(ρL)=0ρL=nπρ=nπLXn=sinnπxL,nNT=λc2T=n2c2π2L2TTn=en2c2π2 t/L2,nNu(x,t)=n=1AnsinnπxLen2c2π2 t/L2u(x,0)=f(x)=n=1AnsinnπxLAn=2LL0f(x)sinnπxLdx=2L(L/20xsinnπxLdx+LL/2(Lx)sinnπxLdx)=2LL2n2π2sinnπ2=2Ln2π2sinnπ2u(x,t)=n=1AnsinnπxLen2c2π2 t/L2,An=2Ln2π2sinnπ2
 

==================== END ======================
解題僅供參考,其他歷年試題及詳解

沒有留言:

張貼留言