國立雲林科技大學110學年度碩士班招生考試
系所:電機系
科目:工程數學(2)
解答:(1)y′=10sin(2x)⇒y=∫10sin(2x)dx=−5cos(2x)+c1⇒y=−5cos(2x)+c1(2)Integration factor I(x)=e∫3x2dx=ex3⇒I(x)y′+3x2yI(x)=2e−x3I(x)⇒ex3y′+3x2ex3y=2⇒(ex3y)′=2⇒ex3y=2x+c1⇒y=2xe−x3+c1e−x3(3)Let v(x)=1y⇒v′=−y′y2⇒y′=−y2v′=−v′v2⇒−v′v2−1v=exv2⇒exv′+exv=−e2x⇒(exv)′=−e2x⇒exv=−12e2x+c1⇒v=−12ex+c1e−x⇒y=1−12ex+c1e−x⇒y=−2exe2x+c2
解答:y″−2y′=0⇒λ2−2λ=0⇒λ=2,0⇒yh=c1e2x+c2Applying variation of parameters, let{y1=e2xy2=1⇒W=|y1y2y′1y′2|=|e2x12e2x0|=−2e2x⇒yp=−e2x∫−6+ex−2e2xdx+∫e2x(−6+ex)−2e2xdx=32+3x−ex⇒y=yh+yp⇒y=c1e2x+c3+3x−ex
解答:(1)F(s)=L{t2−e−2t+cos(2t)}=2s3−1s+2+ss2+22(2)L−1{12s(s−1)(s+1)(s+2)}=L−1{2s−1+6s+1−8s+2}=2et+6e−t−8e−2t(3)F(s)=2s(1+e−as)=2s⋅11+e−as11+e−as=11−(−e−as)=1−e−as+e−2as−e−3as+⋯=∞∑n=0(−1)ne−nasIf L{f(t)}=F(s)⇒11+e−asF(s)=∞∑n=0(−1)ne−nasF(s)⇒L−1{11+e−asF(s)}=L−1{∞∑n=0(−1)ne−nasF(s)}=∞∑n=0(−1)nf(t−na)u(t−na)Now, L−1{2s(1+e−as)}=L−1{11+e−as⋅2s}=2∞∑n=0(−1)nu(t−na)
解答:L{y″+2y′+5y}=6L{δ(t−2)}⇒s2Y(s)+2sY(s)+5Y(s)=6e−2s⇒Y(s)=6s2+2s+5e−2s=2⋅3(s+1)2+22e−2s⇒y(t)=L−1{Y(s)}⇒y(t)=u(t−2)⋅3e−(t−2)sin(2(t−2))
解答:{2x1+4x2+6x3=184x1+5x2+6x3=242x1+7x2+12x3=40⇒[2461845624271240]R2−2R1→R2,R3−R1→R3→[246180−3−6−1203622]−(1/3)R2→R2→[24618012403622]R3−3R2→R3,R1−4R2→R1→[20−22012400010](1/2)R1→R1,(1/10)R3→R3→[10−1101240001]R1−R3→R1,R2−4R3→R2→[10−1001200001]⇒rwo-reduce form [10−1001200001]⇒{x1−x3=0x2+2x3=00=1⇒No solution
解答:A=[12−2136−541203]⇒rref(A)=[120300110000]⇒{x1+2x2+3x4=0x3+x4=0⇒x=x2(−2100)+x4(−30−11)⇒N(A)={s(−2100)+t(−30−11)∣s,t∈R},rank(A)=2,nullity(A)=2

解答:(a)(0,0,0)∉W1⇒W1is NOT a subspace of R3(b){u=(u1,u1+u3,u3)∈W2v=(v1,v1+v3,v3)∈W2⇒{u+v=(u1+v1,u1+v1+u3+v3,u3+v3)cu=(cu1,c(u1+u3),cu3)⇒{u+v∈W2cu∈W2⇒W2IS a subspace of R3
========================= END =============================
解題僅供參考,其他歷年試題及詳解
沒有留言:
張貼留言