Loading [MathJax]/jax/output/CommonHTML/jax.js

2024年3月4日 星期一

110年雲科大電機碩士班-工程數學詳解

 國立雲林科技大學110學年度碩士班招生考試

系所:電機系
科目:工程數學(2)

解答(1)y=10sin(2x)y=10sin(2x)dx=5cos(2x)+c1y=5cos(2x)+c1(2)Integration factor I(x)=e3x2dx=ex3I(x)y+3x2yI(x)=2ex3I(x)ex3y+3x2ex3y=2(ex3y)=2ex3y=2x+c1y=2xex3+c1ex3(3)Let v(x)=1yv=yy2y=y2v=vv2vv21v=exv2exv+exv=e2x(exv)=e2xexv=12e2x+c1v=12ex+c1exy=112ex+c1exy=2exe2x+c2


解答y2y=0λ22λ=0λ=2,0yh=c1e2x+c2Applying variation of parameters, let{y1=e2xy2=1W=|y1y2y1y2|=|e2x12e2x0|=2e2xyp=e2x6+ex2e2xdx+e2x(6+ex)2e2xdx=32+3xexy=yh+ypy=c1e2x+c3+3xex

解答(1)F(s)=L{t2e2t+cos(2t)}=2s31s+2+ss2+22(2)L1{12s(s1)(s+1)(s+2)}=L1{2s1+6s+18s+2}=2et+6et8e2t(3)F(s)=2s(1+eas)=2s11+eas11+eas=11(eas)=1eas+e2ase3as+=n=0(1)nenasIf L{f(t)}=F(s)11+easF(s)=n=0(1)nenasF(s)L1{11+easF(s)}=L1{n=0(1)nenasF(s)}=n=0(1)nf(tna)u(tna)Now, L1{2s(1+eas)}=L1{11+eas2s}=2n=0(1)nu(tna)
解答L{y+2y+5y}=6L{δ(t2)}s2Y(s)+2sY(s)+5Y(s)=6e2sY(s)=6s2+2s+5e2s=23(s+1)2+22e2sy(t)=L1{Y(s)}y(t)=u(t2)3e(t2)sin(2(t2))

解答{2x1+4x2+6x3=184x1+5x2+6x3=242x1+7x2+12x3=40[2461845624271240]R22R1R2,R3R1R3[246180361203622](1/3)R2R2[24618012403622]R33R2R3,R14R2R1[2022012400010](1/2)R1R1,(1/10)R3R3[101101240001]R1R3R1,R24R3R2[101001200001]rwo-reduce form [101001200001]{x1x3=0x2+2x3=00=1No solution


解答A=[122136541203]rref(A)=[120300110000]{x1+2x2+3x4=0x3+x4=0x=x2(2100)+x4(3011)N(A)={s(2100)+t(3011)s,tR},rank(A)=2,nullity(A)=2


解答{A=[111213]b=[013]{ATA=[36614]ATb=[411]x=(ATA)1(ATb)=[731112][411]x=[5332]

解答(a)(0,0,0)W1W1is NOT a subspace of R3(b){u=(u1,u1+u3,u3)W2v=(v1,v1+v3,v3)W2{u+v=(u1+v1,u1+v1+u3+v3,u3+v3)cu=(cu1,c(u1+u3),cu3){u+vW2cuW2W2IS a subspace of R3

========================= END =============================

解題僅供參考,其他歷年試題及詳解

沒有留言:

張貼留言