2024年3月9日 星期六

110年北科大機電整合碩士班乙組-工程數學詳解

國立臺北科技大學110學年度碩士班招生考試

系所組別:機械工程系機電整合碩士班乙組
科目:工程數學

解答:integrating factor I(x)=e1dx=exI(x)y+I(x)y=12I(x)(exex)exy+exy=12(e2x1)(exy)=12(e2x1)exy=12(12e2xx)+c1y=14ex12xex+c1ex

解答:y+13y=13(12x)y43y4yy3=2x13y4yexy3ex=(2x1)ex(y3ex)=(2x1)exy3ex=(2x1)exdx=ex(2x1)+c1y3=(2x1)+c1exy=132x1+c1ex

解答:y+y=0yh=c1cosx+c2sinxyp=Axcosx+Bxsinxyp=AcosxAxsinx+Bsinx+Bxcosxyp=2AsinxAxcosx+2BcosxBxsinxyp+yp=2Asinx+2Bcosx=cosx{A=0B=1/2yp=12xsinxy=yh+ypy=c1cosx+c2sinx+12xsinx

解答:Let {y1=cosxy2=sinxW=|y1y2y1y2|=|cosxsinxsinxcosx|=1yp=cosxsinxcosxdx+sinxcosxcosxdx=14cosx+12xsinxy=yh+yp=c1cosx+c2sinx+14cosx+12xsinxy=c3cosx+c2sinx+12xsinx

解答:L{y}+8L{y}+16L{y}=L{t2e4t}s2Y(s)sy(0)y(0)+8(sY(s)y(0))+16Y(s)=d2dt2(1s+4)(s2+8s+16)Y(s)s4=2(s+4)3Y(s)=2(s+4)5+1s+4y(t)=L1{2(s+4)5}+L1{1s+4}y(t)=112e4tt4+e4t

解答:L{y}+4L{y}=L{f(t)}=L{u(tπ)3cos(t)}s2Y(s)sy(0)y(0)+4Y(s)=3ss2+1eπs(s2+4)Y(s)s1=3ss2+1eπsY(s)=3s(s2+1)(s2+4)eπs+s+1s2+4y(t)=L1{Y(s)}=L1{3s(s2+1)(s2+4)eπs}+L1{s+1s2+4}=u(tπ)(cos(tπ)+cos(2(tπ))+cos(2t)+12sin(2t)y(t)=u(tπ)(cost+cos(2t))+cos(2t)+12sin(2t)

解答:y(x,t)=X(x)T(t){2yt2=c22yx2XT=c2XTBC{y(0,t)=0y(L,t)=0{X(0)T(t)=0X(L)T(t)=0{X(0)=0X(L)=0XT=c2XTXX=Tc2T=kCase 1: k=0X=0X=c1x+c2BC{X(0)=c2=0X(L)=c1L+c2=0c1=c2=0X=0Cases 2: k=μ2>0(μ>0)Xμ2X=0X=c1eμx+c2eμxBC{X(0)=c1+c2=0c2=c1X(L)=c1eμL+c2eμL=0c1eμLc1eμL=0c1(e2μL)1)=0c1=0c2=0X=0Case 3: k=μ2<0X+μ2X=0X=c1cos(μx)+c2sin(μx)BC{X(0)=c1=0X(L)=c2sin(μL)=0μL=nπμ=nπLXn=sin(nπxL),nNTkc2T=0T+μ2c2T=0T=c3cos(μct)+c4sin(μct)T=c3μcsin(μct)+c4μccos(μct)yt(x,0)=0X(x)T(0)=0T(0)=0c4=0T=c3cos(μct)Tn=cos(ncπtL)yn(x,t)=Xn(x)Tn(t)=sin(nπxL)cos(ncπtL),nNy(x,t)=n=1ansin(nπxL)cos(ncπtL)y(x,0)=n=1ansin(nπxL)=f(x)an=2LL0f(x)cos(nπxL)dxy(x,t)=n=1ansin(nπxL)cos(ncπtL),where an=2LL0f(x)cos(nπxL)dx
==================== END ======================
解題僅供參考,其他歷年試題及詳解

沒有留言:

張貼留言