國立成功大學111學年度碩士班招生考試
系所:測量及空間資訊學系
科目:線性代數

解答:
(a)AA−1=I⇒det(AA−1)=det(I)⇒det(A)⋅det(A−1)=1⇒det(A−1)=1det(A)Q.E.D.(b)det[2I3A0CB]=det(2I3)⋅det(CB)=8det(B)det(C)=−8⋅det(A)2=−8解答:
A=[012101]⇒B=ATA=[101011125]det(B−λI)=0⇒eigenvalues: λ=6,1,0⇒normailized eigenvectors: v1=[1/√302/√305/√30],v2=[−2/√51/√50],v3=[−1/√6−2/√61/√6]⇒V=[v1∣v2∣v3]=[1/√30−2/√5−1/√62/√301/√5−2/√65/√3001/√6]⇒square root of the nonzero eigenvalues: σ1=√6,σ2=1⇒∑=[σ1000σ20]=[√600010]{u1=1σ1Av1=[2/√51/√5]u2=1σ1Av2=[1/√5−2/√5]⇒U=[2/√51/√51/√5−2/√5]⇒A=U∑VT, where U=[2/√51/√51/√5−2/√5],∑=[√600010],V=[1/√30−2/√5−1/√62/√301/√5−2/√65/√3001/√6]

解答:
(a)A=[011101110]⇒det(A−λI)=−λ3+3λ+2=−(λ+1)2(λ−2)⇒eigenvalues: 2,−1⇒indefinite(b)λ1=−1⇒(A−λ1I)v=0⇒[111111111][x1x2x3]=0⇒x1+x2+x3=0λ2=2⇒(A−λ2I)v=0⇒[−2111−2111−2][x1x2x3]=0⇒{x1−x3=0x2−x3=0⇒there is only one eigenvalue −1 on the subspace M⇒possitive definite(c)f(x1,x2,x3)=[x1,x2,x3][1β−1β12−125][x1x2x3]=xTAxA is positive defininte⇒{|1ββ1|=1−β2>0|1β−1β12−125|=a(−5a−4)>0⇒{−1<β<1−4/5<β<0⇒−45<β<0

解答:
T(x)=0⇒{a1−2a2=03a3=0⇒x=(2a2a20)⇒Null(T)={k(210)∣k∈R}⇒Nullity(A)=1,Rank(A)=3−Nullity(A)=2⇒Rank(A)=2
解答:
(a)T(u)=[1−335−17][2−1]=[51−9](b)T(x)=b⇒B=[A∣b]=[1−33352−17−5]⇒rref(B)=[103201−12000]⇒x=[3/2−1/2](c)rref(A)=[1‘00100]⇒rank(A)=2⇒NO(d)T(x)=c⇒B=[A∣c]=[1−33352−175]⇒rref(B)=[100010001]⇒c∉T(x)
解答:
(a)Az=b≡[10111213][αβ]=[0246](b){ATA=[11110123][10111213]=[46614]ATb=[11110123][0246]=[1228]⇒z=(ATA)−1(ATb)=[710−310−31015][1228]=[02]⇒{α=0β=2f=2x⇒{f(0)=0f(1)=2f(2)=4f(3)=6⇒square error =0+0+0+0=0 ==================== END ======================
沒有留言:
張貼留言