Loading [MathJax]/jax/output/CommonHTML/jax.js

2024年3月5日 星期二

111年成大測量-線性代數詳解

國立成功大學111學年度碩士班招生考試

系所:測量及空間資訊學系
科目:線性代數




解答:(a)AA1=Idet(AA1)=det(I)det(A)det(A1)=1det(A1)=1det(A)Q.E.D.(b)det[2I3A0CB]=det(2I3)det(CB)=8det(B)det(C)=8det(A)2=8
解答:A=[012101]B=ATA=[101011125]det(BλI)=0eigenvalues: λ=6,1,0normailized eigenvectors: v1=[1/302/305/30],v2=[2/51/50],v3=[1/62/61/6]V=[v1v2v3]=[1/302/51/62/301/52/65/3001/6]square root of the nonzero eigenvalues: σ1=6,σ2=1=[σ1000σ20]=[600010]{u1=1σ1Av1=[2/51/5]u2=1σ1Av2=[1/52/5]U=[2/51/51/52/5]A=UVT, where U=[2/51/51/52/5],=[600010],V=[1/302/51/62/301/52/65/3001/6]

解答:(a)A[011101110]det(AλI)=λ3+3λ+2=(λ+1)2(λ2)eigenvalues: 2,1indefinite(b)λ1=1(Aλ1I)v=0[111111111][x1x2x3]=0x1+x2+x3=0λ2=2(Aλ2I)v=0[211121112][x1x2x3]=0{x1x3=0x2x3=0there is only one eigenvalue 1 on the subspace Mpossitive definite(c)f(x1,x2,x3)=[x1,x2,x3][1β1β12125][x1x2x3]=xTAxA is positive defininte{|1ββ1|=1β2>0|1β1β12125|=a(5a4)>0{1<β<14/5<β<045<β<0


解答:T(x)=0{a12a2=03a3=0x=(2a2a20)Null(T)={k(210)kR}Nullity(A)=1,Rank(A)=3Nullity(A)=2Rank(A)=2

解答:(a)T(u)=[133517][21]=[519](b)T(x)=bB=[Ab]=[133352175]rref(B)=[10320112000]x=[3/21/2](c)rref(A)=[100100]rank(A)=2NO(d)T(x)=cB=[Ac]=[133352175]rref(B)=[100010001]cT(x)

解答:(a)Az=b[10111213][αβ][0246](b){ATA=[11110123][10111213]=[46614]ATb=[11110123][0246]=[1228]z=(ATA)1(ATb)=[71031031015][1228]=[02]{α=0β=2f=2x{f(0)=0f(1)=2f(2)=4f(3)=6square error =0+0+0+0=0
 
==================== END ======================
解題僅供參考,其他歷年試題及詳解

沒有留言:

張貼留言