Loading [MathJax]/jax/output/CommonHTML/jax.js

2024年3月9日 星期六

110年北科大製造碩士班-微分方程詳解

 國立臺北科技大學110學年度碩士班招生考試

系所組別:製造科技研究所
科目:微分方程

解答:xxyy=0y=x(1y)11ydy=xdxln(1y)=12x2+c11y=ex2/2c1y=1+c2ex2/2
解答:(1)2y+3xy=0(2y)dx+(3x)dy=0{P(x,y)=2yQ(x,y)=3x{Py=2Qx=3PyQxNot exact,Q.E.D.(2)PyQxQ=13x dependent on xu=13xuintegrating factor u=x1/3(3){uP=2x1/3yuQ=3x2/3(uP)y=2x1/3=(uQ)xΦ(x,y)=uPdx=uQdy2x1/3ydx=3x2/3dy3x2/3y+ϕ(y)=3x2/3y+ρ(x)3x2/3y+c1=0y=c2x2/3
解答:xy+yex=0(xy)=exxy=ex+c1y(1)=ee=e+c1c1=0y=exx
解答:,x2y+xyy=1x+1y+yxyx2=1x2(x+1)y+(yx)=1x2(x+1)(y+yx)=1x21x+1x+1y+yx=(1x21x+1x+1)dx=1xlnx+ln(x+1)+c1xy+y=(xy)=1xlnx+xln(x+1)+c1xxy=(1xlnx+xln(x+1)+c1x)dx=x(12x2lnx14x2)+12(x21)ln(x+1)14x2+12x+12c1x2+c2=12x+c3x2+c212x2lnx+12(x21)ln(x+1)y=12+c3x+c2x12xlnx+12x(x21)ln(x+1)
解答:u(x,t)=X(x)T(t){PDE: XT=XT+XTXX=TT+1BC{u(0,t)=X(0)T(t)=0u(π,t)=X(π)T(t)=0{X(0)=0X(π)=0XX=TT+1=λCase 1: λ=0X=0X=c1x+c2BC{X(0)=c2=0X(π)=c1π+c2=0c1=c2=0X=0u=0Case 2: λ>0λ=k2(k>0)Xk2X=0X=c1ekx+c2ekxBC{X(0)=c1+c2=0X(π)=c1ekπ+c2ekπ=0c1ekπc1ekπ=0c1(e2kπ1)=0c1=0c2=0X=0u=0Case 3: λ<0λ=k2(k>0)X+k2X=0X=c1cos(kx)+c2sin(kx)BC{X(0)=c1=0X(π)=c2sin(kπ)=0sin(kπ)=0k=nXn=sin(nx),nNTT+1=k2T+(1+k2)T=0T=c3cos(k2+1t)+c4sin(k2+1t)T=c3k2+1sin(k2+1t)+c4k2+1cos(k2+1t)IC:X(x)T(0)=0T(0)=0c4=0T=c3cos(k2+1t)Tn=cncos(n2+1t)u(x,t)=n=1ansin(nx)cos(n2+1t)u(x,0)=n=1ansin(nx)=f(x)={x0<x<π/2πxπ/2<x<πan=2ππ0f(x)sin(nx)dx=4n2πsin(nπ/2)u(x,t)=n=14n2πsin(nπ/2)sin(nx)cos(n2+1t)

==================== END ======================
解題僅供參考,其他歷年試題及詳解

沒有留言:

張貼留言