國立臺北科技大學110學年度碩士班招生考試
系所組別:製造科技研究所
科目:微分方程
解答:x−xy−y′=0⇒y′=x(1−y)⇒11−ydy=xdx⇒−ln(1−y)=12x2+c1⇒1−y=e−x2/2−c1⇒y=1+c2e−x2/2解答:(1)2y+3xy′=0⇒(2y)dx+(3x)dy=0⇒{P(x,y)=2yQ(x,y)=3x⇒{Py=2Qx=3⇒Py≠Qx⇒Not exact,Q.E.D.(2)Py−QxQ=−13x dependent on x⇒u′=−13xu⇒integrating factor u=x−1/3(3){uP=2x−1/3yuQ=3x2/3⇒(uP)y=2x−1/3=(uQ)x⇒Φ(x,y)=∫uPdx=∫uQdy⇒∫2x−1/3ydx=∫3x2/3dy⇒3x2/3y+ϕ(y)=3x2/3y+ρ(x)⇒3x2/3y+c1=0⇒y=c2x−2/3
解答:xy′+y−ex=0⇒(xy)′=ex⇒xy=ex+c1y(1)=e⇒e=e+c1⇒c1=0⇒y=exx
解答:題目有誤,應該是x2y″+xy′−y=1x+1⇒y″+y′x−yx2=1x2(x+1)⇒y″+(yx)′=1x2(x+1)⇒(y′+yx)′=1x2−1x+1x+1⇒y′+yx=∫(1x2−1x+1x+1)dx=−1x−lnx+ln(x+1)+c1⇒xy′+y=(xy)′=−1−xlnx+xln(x+1)+c1x⇒xy=∫(−1−xlnx+xln(x+1)+c1x)dx=−x−(12x2lnx−14x2)+12(x2−1)ln(x+1)−14x2+12x+12c1x2+c2=−12x+c3x2+c2−12x2lnx+12(x2−1)ln(x+1)⇒y=−12+c3x+c2x−12xlnx+12x(x2−1)ln(x+1)
解答:u(x,t)=X(x)T(t)⇒{PDE: X″T=XT″+XT⇒X″X=T″T+1BC{u(0,t)=X(0)T(t)=0u(π,t)=X(π)T(t)=0⇒{X(0)=0X(π)=0X″X=T″T+1=λCase 1: λ=0⇒X″=0⇒X=c1x+c2⇒BC{X(0)=c2=0X(π)=c1π+c2=0⇒c1=c2=0⇒X=0⇒u=0Case 2: λ>0⇒λ=k2(k>0)⇒X″−k2X=0⇒X=c1ekx+c2e−kx⇒BC{X(0)=c1+c2=0X(π)=c1ekπ+c2e−kπ=0⇒c1ekπ−c1e−kπ=0⇒c1(e2kπ−1)=0⇒c1=0⇒c2=0⇒X=0⇒u=0Case 3: λ<0⇒λ=−k2(k>0)⇒X″+k2X=0⇒X=c1cos(kx)+c2sin(kx)BC{X(0)=c1=0X(π)=c2sin(kπ)=0⇒sin(kπ)=0⇒k=n⇒Xn=sin(nx),n∈N⇒T″T+1=−k2⇒T″+(1+k2)T=0⇒T=c3cos(√k2+1t)+c4sin(√k2+1t)⇒T′=−c3√k2+1sin(√k2+1t)+c4√k2+1cos(√k2+1t)IC:X(x)T′(0)=0⇒T′(0)=0⇒c4=0⇒T=c3cos(√k2+1t)⇒Tn=cncos(√n2+1t)⇒u(x,t)=∞∑n=1ansin(nx)cos(√n2+1t)⇒u(x,0)=∞∑n=1ansin(nx)=f(x)={x0<x<π/2π−xπ/2<x<π⇒an=2π∫π0f(x)sin(nx)dx=4n2πsin(nπ/2)⇒u(x,t)=∞∑n=14n2πsin(nπ/2)sin(nx)cos(√n2+1t)==================== END ======================
解題僅供參考,其他歷年試題及詳解
沒有留言:
張貼留言