Loading [MathJax]/jax/element/mml/optable/BasicLatin.js

2024年3月11日 星期一

110年北科大電機碩士班-工程數學詳解

 國立臺北科技大學110學年度碩士班招生考試

系所組別:電機工程碩士班丙組
科目:工程數學

解答:v(x)=1yv=yy2y=y2v=vv2vv221v=1v2e3xv+2v=e3xe2xv+2e2xv=e5x(e2xv)=e5xe2xv=15e5x+c1v=1y=15e3x+c1e2xy=115e3x+c1e2xy=5e2xe5x+c2
解答:y=xmy=mxm1m(m1)xm2x2y5xy+9y=m(m1)xm5mxm+9xm=(m26m+9)xm=0m26m+9=(m3)2=0m=3yh=c1x3+c2x3lnxApplying variation of parameters, let {y1=x3y2=x3lnxr(x)=2x+lnx/x2W=|y1y2y1y2|=|x3x3lnx3x23x2lnx+x2|=x5yp=x3x3lnx(2x+lnx/x2)x5dx+x3lnxx3(2x+lnx/x2)x5dx=x3((lnx)2(lnx)23x32lnx9x3227x3)+x3lnx(2lnxlnx3x319x3)=x3(lnx)2+19lnx+227y=hh+ypy=c1x3+c2x3lnx+x3(lnx)2+19lnx+227
解答:f(t)={0t<12t31t<30t3f(t)=(u(t1)u(t3))(2t3)L{f(t)}=3se3s2s2e3s1ses+2s2esL{y(t)}+2L{y(t)}+2L{y(t)}=s2Y(s)1+2sY(s)+2Y(s)=(s2+2s+2)Y(s)1⇒=(s2+2s+2)Y(s)1=3se3s2s2e3s1ses+2s2esY(s)=1(s+1)2+12(13se3s2s2e3s1ses+2s2es)y(t)=L1{Y(s)}=etsin(t)u(t3)(t12et(3sint+cost)52)+u(t1)(t+12et(sint+3cost)52)y(t)=etsin(t)+(u(t1)u(t3))(t52)+12et(u(t1)(sint+3cost)+u(t3)(3sint+cost))
解答:[1234a624b][x1x2x3]=[12c]Ax=b(1)det
解答:A=\begin{bmatrix}1 & 1 \\-1 & 1 \end{bmatrix} \Rightarrow A^{-1}=\begin{bmatrix}\frac{1}{2} & \frac{-1}{2} \\\frac{1}{2} & \frac{1}{2} \end{bmatrix} \Rightarrow A^{-2}= \begin{bmatrix}0 & \frac{-1}{2} \\\frac{1}{2} & 0 \end{bmatrix} \Rightarrow A^{-4}= \begin{bmatrix}\frac{-1}{4} & 0 \\0 & \frac{-1}{4} \end{bmatrix} =-{1\over 4}I_2 \\ \Rightarrow A^{-8}= {1\over 2^4}I_2 \Rightarrow A^{-16}={1\over 2^8}I_2 \Rightarrow A^{-64}={1\over 2^{32}}I_2 \\ \Rightarrow A^{-86}=A^{-64}\cdot A^{-16}\cdot A^{-4} \cdot A^{-2} =-{1\over 2^{42}}I_2 \cdot A^{-2}= \bbox[red, 2pt]{\begin{bmatrix}0 & 1/2^{43} \\-1/2^{43} & 0 \end{bmatrix}}

解答:\text{Given a 2x2 matrix }\begin{bmatrix}x_1 & x_2 \\x_3 & x_4 \end{bmatrix} , \text{there exists }a,b,c,d \text{ such that} \\a\begin{bmatrix}1 & 1 \\-1 & 1 \end{bmatrix} +b\begin{bmatrix}1 & 1 \\0 & 1 \end{bmatrix} +c \begin{bmatrix}1 & 0 \\1 & 1 \end{bmatrix} +d\begin{bmatrix}1 & 0 \\0 & -1 \end{bmatrix} =\begin{bmatrix}x_1 & x_2 \\x_3 & x_4 \end{bmatrix} \\ \Rightarrow \cases{a+b+c+d=x_1\\ a+b=x_2\\ -a+c=x_3\\ a+b+c-d=x_4} \Rightarrow \begin{bmatrix}1 & 1& 1& 1 \\1 & 1 & 0 & 0\\ -1 & 0& 1& 0 \\ 1 & 1& 1& -1 \end{bmatrix} \begin{bmatrix}a \\ b \\c \\ d \end{bmatrix} =\begin{bmatrix}x_1 \\ x_2 \\x_3 \\ x_4 \end{bmatrix}\\ \Rightarrow \begin{bmatrix}a \\ b \\c \\ d \end{bmatrix} =\begin{bmatrix}1 & 1& 1& 1 \\1 & 1 & 0 & 0\\ -1 & 0& 1& 0 \\ 1 & 1& 1& -1 \end{bmatrix}^{-1} \begin{bmatrix}x_1 \\ x_2 \\x_3 \\ x_4 \end{bmatrix}=\begin{bmatrix}\frac{1}{2} & -1 & -1 & \frac{1}{2} \\\frac{-1}{2} & 2 & 1 & \frac{-1}{2} \\\frac{1}{2} & -1 & 0 & \frac{1}{2} \\\frac{1}{2} & 0 & 0 & \frac{-1}{2} \end{bmatrix} \begin{bmatrix}x_1 \\ x_2 \\x_3 \\ x_4 \end{bmatrix} \\ \Rightarrow \cases{a=x_1/2-x_2-x_3+x_4/2 \\b=-x_1/2+2x_2+x_3-x_4/2\\ c=x_1/2-x_2+x_4/2\\ d=x_1/2-x_4/2} \Rightarrow \text{Any 2x2 matrix can be the combination of vectors in }V\\ \Rightarrow \bbox[red, 2pt]{Yes! }\text{V form a basis. }
==================== END ======================
解題僅供參考,其他歷年試題及詳解

1 則留言:

  1. 第三題,想討論一下
    1.u(t-3)那部份,sin&cos裡面都應該是(t-3),以及乘上的e^(-t)也應該改成e^-(t-3)?
    2.u(t-1)也是同理,sin&cos裡面應該是(t-1),以及乘上的e^(-t)也應該改成e^-(t-1)?

    回覆刪除