國立臺北科技大學110學年度碩士班招生考試
系所組別:電機工程碩士班丙組
科目:工程數學
解答:v(x)=1y⇒v′=−y′y2⇒y′=−y2v′=−v′v2⇒−v′v2−21v=−1v2e3x⇒v′+2v=e3x⇒e2xv′+2e2xv=e5x⇒(e2xv)′=e5x⇒e2xv=15e5x+c1⇒v=1y=15e3x+c1e2x⇒y=115e3x+c1e2x⇒y=5e2xe5x+c2解答:y=xm⇒y′=mxm−1⇒m(m−1)xm−2⇒x2y″−5xy′+9y=m(m−1)xm−5mxm+9xm=(m2−6m+9)xm=0⇒m2−6m+9=(m−3)2=0⇒m=3⇒yh=c1x3+c2x3lnxApplying variation of parameters, let {y1=x3y2=x3lnxr(x)=2x+lnx/x2⇒W=|y1y2y′1y′2|=|x3x3lnx3x23x2lnx+x2|=x5⇒yp=−x3∫x3lnx⋅(2x+lnx/x2)x5dx+x3lnx∫x3(2x+lnx/x2)x5dx=−x3((lnx)2−(lnx)23x3−2lnx9x3−227x3)+x3lnx(2lnx−lnx3x3−19x3)=x3(lnx)2+19lnx+227⇒y=hh+yp⇒y=c1x3+c2x3lnx+x3(lnx)2+19lnx+227
解答:f(t)={0t<12t−31≤t<30t≥3⇒f(t)=(u(t−1)−u(t−3))(2t−3)⇒L{f(t)}=−3se−3s−2s2e−3s−1se−s+2s2e−sL{y″(t)}+2L{y′(t)}+2L{y(t)}=s2Y(s)−1+2sY(s)+2Y(s)=(s2+2s+2)Y(s)−1⇒=(s2+2s+2)Y(s)−1=−3se−3s−2s2e−3s−1se−s+2s2e−s⇒Y(s)=1(s+1)2+12(1−3se−3s−2s2e−3s−1se−s+2s2e−s)⇒y(t)=L−1{Y(s)}=e−tsin(t)−u(t−3)(t−12e−t(3sint+cost)−52)+u(t−1)(t+12e−t(sint+3cost)−52)⇒y(t)=e−tsin(t)+(u(t−1)−u(t−3))(t−52)+12e−t(u(t−1)(sint+3cost)+u(t−3)(3sint+cost))
解答:[1234a624b][x1x2x3]=[12c]≡Ax=b(1)det
解答:A=\begin{bmatrix}1 & 1 \\-1 & 1 \end{bmatrix} \Rightarrow A^{-1}=\begin{bmatrix}\frac{1}{2} & \frac{-1}{2} \\\frac{1}{2} & \frac{1}{2} \end{bmatrix} \Rightarrow A^{-2}= \begin{bmatrix}0 & \frac{-1}{2} \\\frac{1}{2} & 0 \end{bmatrix} \Rightarrow A^{-4}= \begin{bmatrix}\frac{-1}{4} & 0 \\0 & \frac{-1}{4} \end{bmatrix} =-{1\over 4}I_2 \\ \Rightarrow A^{-8}= {1\over 2^4}I_2 \Rightarrow A^{-16}={1\over 2^8}I_2 \Rightarrow A^{-64}={1\over 2^{32}}I_2 \\ \Rightarrow A^{-86}=A^{-64}\cdot A^{-16}\cdot A^{-4} \cdot A^{-2} =-{1\over 2^{42}}I_2 \cdot A^{-2}= \bbox[red, 2pt]{\begin{bmatrix}0 & 1/2^{43} \\-1/2^{43} & 0 \end{bmatrix}}
解答:\text{Given a 2x2 matrix }\begin{bmatrix}x_1 & x_2 \\x_3 & x_4 \end{bmatrix} , \text{there exists }a,b,c,d \text{ such that} \\a\begin{bmatrix}1 & 1 \\-1 & 1 \end{bmatrix} +b\begin{bmatrix}1 & 1 \\0 & 1 \end{bmatrix} +c \begin{bmatrix}1 & 0 \\1 & 1 \end{bmatrix} +d\begin{bmatrix}1 & 0 \\0 & -1 \end{bmatrix} =\begin{bmatrix}x_1 & x_2 \\x_3 & x_4 \end{bmatrix} \\ \Rightarrow \cases{a+b+c+d=x_1\\ a+b=x_2\\ -a+c=x_3\\ a+b+c-d=x_4} \Rightarrow \begin{bmatrix}1 & 1& 1& 1 \\1 & 1 & 0 & 0\\ -1 & 0& 1& 0 \\ 1 & 1& 1& -1 \end{bmatrix} \begin{bmatrix}a \\ b \\c \\ d \end{bmatrix} =\begin{bmatrix}x_1 \\ x_2 \\x_3 \\ x_4 \end{bmatrix}\\ \Rightarrow \begin{bmatrix}a \\ b \\c \\ d \end{bmatrix} =\begin{bmatrix}1 & 1& 1& 1 \\1 & 1 & 0 & 0\\ -1 & 0& 1& 0 \\ 1 & 1& 1& -1 \end{bmatrix}^{-1} \begin{bmatrix}x_1 \\ x_2 \\x_3 \\ x_4 \end{bmatrix}=\begin{bmatrix}\frac{1}{2} & -1 & -1 & \frac{1}{2} \\\frac{-1}{2} & 2 & 1 & \frac{-1}{2} \\\frac{1}{2} & -1 & 0 & \frac{1}{2} \\\frac{1}{2} & 0 & 0 & \frac{-1}{2} \end{bmatrix} \begin{bmatrix}x_1 \\ x_2 \\x_3 \\ x_4 \end{bmatrix} \\ \Rightarrow \cases{a=x_1/2-x_2-x_3+x_4/2 \\b=-x_1/2+2x_2+x_3-x_4/2\\ c=x_1/2-x_2+x_4/2\\ d=x_1/2-x_4/2} \Rightarrow \text{Any 2x2 matrix can be the combination of vectors in }V\\ \Rightarrow \bbox[red, 2pt]{Yes! }\text{V form a basis. }
==================== END ======================
解題僅供參考,其他歷年試題及詳解
第三題,想討論一下
回覆刪除1.u(t-3)那部份,sin&cos裡面都應該是(t-3),以及乘上的e^(-t)也應該改成e^-(t-3)?
2.u(t-1)也是同理,sin&cos裡面應該是(t-1),以及乘上的e^(-t)也應該改成e^-(t-1)?