國立清華大學112學年度碩士班考試入學
系所班組別: 科技管理研究所(乙組)
考試科目: 微積分
解答: (a)limx→0(sin(a+2x)−2sin(a+x)+sinax2=limx→0sin(a+2x)−2sin(a+x)+sina)′(x2)′=limx→02cos(a+2x)−2cos(a+x)2x=limx→0(cos(a+2x)−cos(a+x))′(x)′=limx→0(−2sin(a+2x)+sin(a+x))=−sina(b)L=(1+2n+3n2)n=(n2+2n+3n2)n⇒lnL=nln(n2+2n+3n2)⇒limn→∞lnL=limn→∞ln(n2+2n+3n2)1n=limn→∞(ln(n2+2n+3n2))′(1n)′=limn→∞n2n2+2n+3⋅−2n−6n3−1n2=limn→∞=n(2n+6)n2+2n+3=2⇒limn→∞L=e2(c)∫101log10xxdx=1ln10∫101lnxxdx=1ln10[12(lnx)2]|101=1ln10⋅12(ln10)2=12ln10(d)∫π/20∫π/2ysinxxdxdy=∫π/20∫x0sinxxdydx=∫π/20sinxdx=1(e){f(x,y)=x3/4y1/4g(x,y)=x+y−100⇒{fx=λgxfy=λgyg=0⇒{34x−1/4y1/4=λ14x3/4y−3/4=λ⇒3yx=1⇒x=3y⇒3y+y=100⇒y=25⇒x=75⇒max(f)=f(75,25)=753/4251/4(f)y′+2y=e−x⇒e2xy′+2e2xy=ex⇒(e2xy)′=ex⇒e2xy=ex+C⇒y=e−x+Ce−2x⇒y(0)=1+C=0⇒C=−1⇒y=e−x−e−2x(g) The circumference of the circle center A(2,0) around the y-axis is equal to 4π,and the area of circle is: π,then the volume of the torus is: 4π×π=4π2

解答: f(x)=x+cosx1+sinx⇒f′(x)=−xcosx(1+sinx)2=0⇒x=0,π/2, for x∈[0,π]⇒{f(0)=1f(π/2)=π/4f(π)=π−1⇒{abs max: π−1abs min: π/4
解答: dSdt=k(D−S)⇒S′+kS=kD⇒ektS′+kektS=kDekt⇒(ektS)′=kDekt⇒ektS=∫kDektdt=Dekt+C⇒S=D+Ce−kt⇒S(0)=D+C=S0⇒C=S0−D⇒S=D+(S0−D)e−kt

解答: f(x,y)=x3−3x2+y2⇒{fx=3x2−6xfy=2y⇒{fxx=6x−6fxy=0fyy=2⇒d(x,y)=fxxfyy−(fxy)2=12x−12{fx=0fy=0⇒{3x(x−2)=0⇒x=0,2y=0⇒{d(0,0)=0d(2,0)=12>0⇒fxx(2,0)=6>0Additionally, {f(x,0)=x3−3x2 has a local maximum at (0,0)f(0,y)=y2has a local minimum at (0,0)⇒(0,0) is a saddle point of fIn summary{f has a local minimum at (2,0)f has a saddle point at (0,0)

解答: (a)∂f∂x(0,0)=limh→0f(0+h,0)−f(0,0)h=limh→00−0h=0⇒∂f∂x(0,0) exists∂f∂y(0,0)=limh→0f(0,0+h)−f(0,0)h=limh→0hsin1h2−0h=limh→0sin1h2 Not exists⇒∂f∂y(0,0) does NOT exists(b)−|y|≤|ysin1x2+y2|≤|y|⇒lim(x,y)→(0,0)−|y|≤lim(x,y)→(0,0)|ysin1x2+y2|≤lim(x,y)→(0,0)|y|⇒0≤lim(x,y)→(0,0)|ysin1x2+y2|≤0⇒lim(x,y)→(0,0)|ysin1x2+y2|=0⇒f is continuous at(0,0)⇒Yes
==================== END ======================
解題僅供參考,其他歷年試題及詳解
第一大題的(f),初始條件是有給的喔,所以C解得出來.
回覆刪除已加入初始值計算,謝謝!
刪除