Loading [MathJax]/jax/output/CommonHTML/jax.js

2024年3月22日 星期五

112年清華科技管理碩士班-微積分詳解

國立清華大學112學年度碩士班考試入學

系所班組別: 科技管理研究所(乙組)
考試科目: 微積分

解答: (a)limx0(sin(a+2x)2sin(a+x)+sinax2=limx0sin(a+2x)2sin(a+x)+sina)(x2)=limx02cos(a+2x)2cos(a+x)2x=limx0(cos(a+2x)cos(a+x))(x)=limx0(2sin(a+2x)+sin(a+x))=sina(b)L=(1+2n+3n2)n=(n2+2n+3n2)nlnL=nln(n2+2n+3n2)limnlnL=limnln(n2+2n+3n2)1n=limn(ln(n2+2n+3n2))(1n)=limnn2n2+2n+32n6n31n2=limn=n(2n+6)n2+2n+3=2limnL=e2(c)101log10xxdx=1ln10101lnxxdx=1ln10[12(lnx)2]|101=1ln1012(ln10)2=12ln10(d)π/20π/2ysinxxdxdy=π/20x0sinxxdydx=π/20sinxdx=1(e){f(x,y)=x3/4y1/4g(x,y)=x+y100{fx=λgxfy=λgyg=0{34x1/4y1/4=λ14x3/4y3/4=λ3yx=1x=3y3y+y=100y=25x=75max(f)=f(75,25)=753/4251/4(f)y+2y=exe2xy+2e2xy=ex(e2xy)=exe2xy=ex+Cy=ex+Ce2xy(0)=1+C=0C=1y=exe2x(g) The circumference of the circle center A(2,0) around the y-axis is equal to 4π,and the area of circle is: π,then the volume of the torus is: 4π×π=4π2

解答: f(x)=x+cosx1+sinxf(x)=xcosx(1+sinx)2=0x=0,π/2, for x[0,π]{f(0)=1f(π/2)=π/4f(π)=π1{abs max: π1abs min: π/4



解答: dSdt=k(DS)S+kS=kDektS+kektS=kDekt(ektS)=kDektektS=kDektdt=Dekt+CS=D+CektS(0)=D+C=S0C=S0DS=D+(S0D)ekt


解答: f(x,y)=x33x2+y2{fx=3x26xfy=2y{fxx=6x6fxy=0fyy=2d(x,y)=fxxfyy(fxy)2=12x12{fx=0fy=0{3x(x2)=0x=0,2y=0{d(0,0)=0d(2,0)=12>0fxx(2,0)=6>0Additionally, {f(x,0)=x33x2 has a local maximum at (0,0)f(0,y)=y2has a local minimum at (0,0)(0,0) is a saddle point of fIn summary{f has a local minimum at (2,0)f has a saddle point at (0,0)


解答: (a)fx(0,0)=limh0f(0+h,0)f(0,0)h=limh000h=0fx(0,0) existsfy(0,0)=limh0f(0,0+h)f(0,0)h=limh0hsin1h20h=limh0sin1h2 Not existsfy(0,0) does NOT exists(b)|y||ysin1x2+y2||y|lim(x,y)(0,0)|y|lim(x,y)(0,0)|ysin1x2+y2|lim(x,y)(0,0)|y|0lim(x,y)(0,0)|ysin1x2+y2|0lim(x,y)(0,0)|ysin1x2+y2|=0f is continuous at(0,0)Yes

 

==================== END ======================
解題僅供參考,其他歷年試題及詳解

2 則留言:

  1. 第一大題的(f),初始條件是有給的喔,所以C解得出來.

    回覆刪除