國立中央大學112學年度碩士班考試入學
所別: 地球科學系地球物理碩士班
科目: 微積分
解答:(a)limx→aa−xlnxa=limx→a(a−x)′(lnxa)′=limx→a−11x=−1(b)limx→∞3x+4√2x2−5=limx→∞3+4/x√2−5/x=3√2=3√22解答:(a)ddx(tanh(x))=ddx(ex−e−xex+e−x)=ex+e−xex+e−x−(ex−e−x)(ex−e−x)(ex+e−x)2=1−(ex−e−xex+e−x)=1−tanh2(x)(b)y=sin−1x⇒siny=x⇒y′cosy=1⇒y′=1cosy=1√1−x2(siny=x⇒cosy=√1−x2)
解答:(a){u=eaxdv=sin(bx)dx⇒{du=aeaxdxv=−1bcos(bx)⇒∫eaxsin(bx)dx=−1beaxcos(bx)+ab∫eaxcos(bx)dx⋯(1){u=eaxdv=cos(bx)⇒{du=aeaxv=1bsin(bx)⇒∫eaxcos(bx)dx=1beaxsin(bx)−ab∫eaxsin(bx)dx⋯(2)I=∫eaxsin(bx)dx(1)=−1beaxcos(bx)+ab∫eaxcos(bx)dx(2)=−1beaxcos(bx)+ab(1beaxsin(bx)−ab∫eaxsin(bx)dx)=−1beaxcos(bx)+ab2eaxsin(bx)−a2b2I⇒(1+a2b2)I=−1beaxcos(bx)+ab2eaxsin(bx)⇒I=b2a2+b2(−1beaxcos(bx)+ab2eaxsin(bx))=aa2+b2eaxsin(bx)−ba2+b2cos(bx)(b)I=∫∞−∞e−x2dx⇒I2=∫∞−∞e−x2dx∫∞−∞e−y2dy=∫∞−∞∫∞−∞e−(x2+y2)dydxLet {x=rcosθy=rsinθ⇒I2=∫2π0∫∞0re−r2drdθ=∫2π0[−12e−r2]|∞0dθ=∫2π012dθ=π⇒I=√π
解答:y″+3y′+2y=0⇒λ2+3λ+2=0⇒(λ+2)(λ+1)=0⇒λ=−1,−2⇒yh=c1e−x+c2e−2xyp=ax2+bx+c⇒y′p=2ax+b⇒y′p=2a⇒y″p+3y′p+2yp=2ax2+(6a+2b)x+2a+3b+2c=12x2⇒{2a=126a+2b=02a+3b+2c=0⇒{a=6b=−18c=21⇒yp=6x2−18x+21⇒y=yh+yp⇒y=c1e−x+c2e−2x+6x2−18x+21
解答:u(x,t)=X(x)T(t)⇒XT″=c2X″T⇒T″c2T=X″XBC{u(0,t)=0u(L,t)=0⇒{X(0)T(t)=0X(L)T(t)=0⇒{X(0)=0X(L)=0Let T″c2T=X″X=kCase 1. k=0X″=0⇒X=c1x+c2⇒BC{X(0)=c2=0X(L)=c1L+c2=0⇒{c1=0c2=0⇒X=0Case 2. k>0k=ρ2(ρ>0)⇒X″−ρ2X=0⇒X=c1eρx+c2e−ρx⇒BC{X(0)=c1+c2=0X(L)=c1eρL+c2e−ρL=0⇒c2=−c1⇒c1eρL−c1e−ρL=0⇒c1(e2ρL−1)=0⇒c1=0⇒c2=0⇒X=0Case 3. k<0k=−ρ2(ρ>0)⇒X″+ρ2X=0⇒X=c1cos(ρx)+c2sin(ρx)⇒BC{X(0)=c1=0X(L)=c2sin(ρL)=0⇒sin(ρL)=0⇒ρ=nπL⇒Xn=sinnπxL,n∈N⇒T″c2T=−ρ2⇒T″+ρ2c2T=0⇒T=c3cos(ρct)+c4sin(ρct)⇒T′=c4ρccos(ρct)−c3ρcsin(ρct)ut(x,t)|t=0=X(x)T′(0)=0⇒T′(0)=0⇒c4ρc=0⇒c4=0⇒T=c3cos(ρct)⇒Tn=cos(nπctL)⇒un(x,t)=Xn(x)Tn(t)=sinnπxLcosnπctL⇒u(x,t)=∞∑n=1ansinnπxLcosnπctL⇒u(x,0)=f(x)=∞∑n=1ansinnπxL⇒an=2L∫L0f(x)sinnπxLdx⇒u(x,t)=∞∑n=1ansinnπxLcosnπctL,an=2L∫L0f(x)sinnπxLdx
解答:fodd(x)={f(x)0<x<L−f(−x)−L<x<0⇒bn=2L∫L0f(x)sinnπxLdx=2L(∫L/202kLxsinnπxLdx+∫LL/22kL(L−x)sinnπxLdx)=2L(−kLnπcosnπ2+2kLn2π2sinnπ2+2kLn2π2sinnπ2+kLnπcosnπ2)=2L⋅4kLn2π2sinnπ2=8kn2π2sinnπ2⇒fodd(x)=∞∑n=18kn2π2sinnπ2sinnπxL
解答:[A∣I]=[−1121003−11010−134001]−R1+R3→R3,3R1+R2→R2→[−112100027310022−101]−R1→R1,R2−R3→R3→[1−1−2−10002731000−5−4−11](1/2)R2→R2,−(1/5)R3→R3→[1−1−2−1000172321200014515−15]R1+R2→R1,R2−(7/2)R3→R2→[103212120010−1310−157100014515−15]R1−(3/2)R3→R1→[100−71015310010−1310−157100014515−15]⇒A−1=[−71015310−1310−157104515−15]
解答:y′(t)=−λy(t)⇒1ydy=−λdt⇒lny=−λt+y0⇒y(t)=y(0)e−λthalf-life ⇒e−λT=12⇒−λT=−ln2⇒T1/2=ln2/λ⇒λT1/2=ln2,Q.E.D.
解答:\textbf{(b)} \qquad \qquad \iint_S \vec F\cdot d\vec S = \iiint_E \text{div }\vec F\,dV, \\ \text{where }\vec F\text{ is a vector field and its compoenets are continuous and first partial derivative. }\\ \text{E is closed bounded region and }S \text{ is the boundary surface of }E. \\ \textbf{(c)}\; \href{https://byjus.com/physics/derivation-of-heat-equation/}{\text{derivation of heat equation}}
解答:\cases{x(t)=a\cos t\\ y(t)=a\sin t},0\le t\le 2\pi \Rightarrow \cases{x'(t)=-a\sin t\\ y'(t)=a\cos t}\Rightarrow \text{length of a circle:}\int_0^{2\pi} \sqrt{(x'(t))^2+ (y'(t))^2}\,dt \\=\int_0^{2\pi} \sqrt{a^2(\cos^2t+ \sin^2 t)}\,dt =\int_0^{2\pi} a\,dt =2\pi a,\bbox[red, 2pt]{Q.E.D.}
==================== END ======================
解題僅供參考,其他歷年試題及詳解
第六題,最後的b_n答案少2倍,應是8k/(n^2*pi^2)
回覆刪除已修訂,謝謝!
刪除