Loading [MathJax]/extensions/TeX/HTML.js

2024年3月14日 星期四

112年中央大學地球科學碩士班-微積分詳解

國立中央大學112學年度碩士班考試入學

所別: 地球科學系地球物理碩士班
科目: 微積分

解答:(a)limxaaxlnxa=limxa(ax)(lnxa)=limxa11x=1(b)limx3x+42x25=limx3+4/x25/x=32=322
解答:(a)ddx(tanh(x))=ddx(exexex+ex)=ex+exex+ex(exex)(exex)(ex+ex)2=1(exexex+ex)=1tanh2(x)(b)y=sin1xsiny=xycosy=1y=1cosy=11x2(siny=xcosy=1x2)
解答:(a){u=eaxdv=sin(bx)dx{du=aeaxdxv=1bcos(bx)eaxsin(bx)dx=1beaxcos(bx)+abeaxcos(bx)dx(1){u=eaxdv=cos(bx){du=aeaxv=1bsin(bx)eaxcos(bx)dx=1beaxsin(bx)abeaxsin(bx)dx(2)I=eaxsin(bx)dx(1)=1beaxcos(bx)+abeaxcos(bx)dx(2)=1beaxcos(bx)+ab(1beaxsin(bx)abeaxsin(bx)dx)=1beaxcos(bx)+ab2eaxsin(bx)a2b2I(1+a2b2)I=1beaxcos(bx)+ab2eaxsin(bx)I=b2a2+b2(1beaxcos(bx)+ab2eaxsin(bx))=aa2+b2eaxsin(bx)ba2+b2cos(bx)(b)I=ex2dxI2=ex2dxey2dy=e(x2+y2)dydxLet {x=rcosθy=rsinθI2=2π00rer2drdθ=2π0[12er2]|0dθ=2π012dθ=πI=π
解答:y+3y+2y=0λ2+3λ+2=0(λ+2)(λ+1)=0λ=1,2yh=c1ex+c2e2xyp=ax2+bx+cyp=2ax+byp=2ayp+3yp+2yp=2ax2+(6a+2b)x+2a+3b+2c=12x2{2a=126a+2b=02a+3b+2c=0{a=6b=18c=21yp=6x218x+21y=yh+ypy=c1ex+c2e2x+6x218x+21
解答:u(x,t)=X(x)T(t)XT=c2XTTc2T=XXBC{u(0,t)=0u(L,t)=0{X(0)T(t)=0X(L)T(t)=0{X(0)=0X(L)=0Let Tc2T=XX=kCase 1. k=0X=0X=c1x+c2BC{X(0)=c2=0X(L)=c1L+c2=0{c1=0c2=0X=0Case 2. k>0k=ρ2(ρ>0)Xρ2X=0X=c1eρx+c2eρxBC{X(0)=c1+c2=0X(L)=c1eρL+c2eρL=0c2=c1c1eρLc1eρL=0c1(e2ρL1)=0c1=0c2=0X=0Case 3. k<0k=ρ2(ρ>0)X+ρ2X=0X=c1cos(ρx)+c2sin(ρx)BC{X(0)=c1=0X(L)=c2sin(ρL)=0sin(ρL)=0ρ=nπLXn=sinnπxL,nNTc2T=ρ2T+ρ2c2T=0T=c3cos(ρct)+c4sin(ρct)T=c4ρccos(ρct)c3ρcsin(ρct)ut(x,t)|t=0=X(x)T(0)=0T(0)=0c4ρc=0c4=0T=c3cos(ρct)Tn=cos(nπctL)un(x,t)=Xn(x)Tn(t)=sinnπxLcosnπctLu(x,t)=n=1ansinnπxLcosnπctLu(x,0)=f(x)=n=1ansinnπxLan=2LL0f(x)sinnπxLdxu(x,t)=n=1ansinnπxLcosnπctL,an=2LL0f(x)sinnπxLdx
解答:fodd(x)={f(x)0<x<Lf(x)L<x<0bn=2LL0f(x)sinnπxLdx=2L(L/202kLxsinnπxLdx+LL/22kL(Lx)sinnπxLdx)=2L(kLnπcosnπ2+2kLn2π2sinnπ2+2kLn2π2sinnπ2+kLnπcosnπ2)=2L4kLn2π2sinnπ2=8kn2π2sinnπ2fodd(x)=n=18kn2π2sinnπ2sinnπxL
解答:[AI]=[112100311010134001]R1+R3R3,3R1+R2R2[112100027310022101]R1R1,R2R3R3[112100027310005411](1/2)R2R2,(1/5)R3R3[112100017232120001451515]R1+R2R1,R2(7/2)R3R2[103212120010131015710001451515]R1(3/2)R3R1[10071015310010131015710001451515]A1=[71015310131015710451515]
解答:y(t)=λy(t)1ydy=λdtlny=λt+y0y(t)=y(0)eλthalf-life eλT=12λT=ln2T1/2=ln2/λλT1/2=ln2,Q.E.D.
解答:\textbf{(b)}  \qquad \qquad \iint_S \vec F\cdot d\vec S = \iiint_E \text{div }\vec F\,dV, \\ \text{where }\vec F\text{ is a vector field and its compoenets are continuous and first partial derivative. }\\ \text{E is closed bounded region and }S \text{ is the boundary surface of }E. \\ \textbf{(c)}\; \href{https://byjus.com/physics/derivation-of-heat-equation/}{\text{derivation of heat equation}}
解答:\cases{x(t)=a\cos t\\ y(t)=a\sin t},0\le t\le 2\pi \Rightarrow \cases{x'(t)=-a\sin t\\ y'(t)=a\cos t}\Rightarrow \text{length of a circle:}\int_0^{2\pi} \sqrt{(x'(t))^2+ (y'(t))^2}\,dt \\=\int_0^{2\pi} \sqrt{a^2(\cos^2t+ \sin^2 t)}\,dt =\int_0^{2\pi} a\,dt =2\pi a,\bbox[red, 2pt]{Q.E.D.}
 

==================== END ======================
解題僅供參考,其他歷年試題及詳解

2 則留言: