Loading [MathJax]/jax/output/CommonHTML/jax.js

2024年3月3日 星期日

112年中央光電碩士班-工程數學詳解

國立中央大學112學年度碩士班考試

所別: 光電類
科目: 工程數學
Choose the correct answer(50%): 單選題,每題5分

解答:I=I0eαxII0=110=eα×0.46×104α5×104,(G)
解答:v=y2v=2y3yy=12y3v12xy3v=y+exy312xv=1y2+ex=v+exx2v+2xv=2xex(x2v)=2xexx2v=2xexdx=2(xexex)+cv=1y2=2(x1exx2ex)+cx2y=(cx22x1ex+2x2ex)1/2,(C)
解答:dydx=2+sinx3(y1)23(y1)2dy=(2+sinx)dx(y1)3=2xcosx+c1y(0)=10=1+c1c1=1(y1)3=2xcosx+1y=(2xcosx+1)1/3+1,(B)
解答:dRdt=2RR=c1e2t,R(0)=1c1=1R=e2tR(1)=e2=7.389,(G)
解答:1.9=2×(12)NN=0.074 elapsed time =0.074×(1.4×1010)=0.1036×1010 years,(A)
解答:3k/2=2k=2×log32=1.2618,(C)
解答:y=xv(x)y=v+xvx2(v+xv)=x2v2x2v+x2v+xv=v2v+1xv=v22v+1=(v1)2dv(v1)2=dxx1v1=lnx+c111yx=lnx+c1xxy=lnx+c1y(1)=2112=0+c1c1=1xxy=lnx1x=222y=ln21y=22ln21=8.5178,(D)
解答:{P(x,y)=2x+2y2Q(x,y)=4xy+3y2Py=4y=QxExactΦ(x,y)=Pdx=Qdy(2x+2y2)dx=(4xy+3y2)dyΦ(x,y)=x2+2xy2+ϕ(y)=2xy2+y3+ρ(x)x2+2xy2+y3=c1 constant,(A)
解答:{P(x,y)=2x+1+2y2Q(x,y)=4xy+3y2Py=4y=QxExactΦ(x,y)=Pdx=Qdy(2x+1+2y2)dx=(4xy+3y2)dyx2+x+2xy2+ϕ(y)=2xy2+y3+ρ(x)Φ=x2+x+2xy2+y3=c1y(0)=1c1=1x2+x+2xy2+y3+1=0y=1x2+x+2x+2=0x2+3x+2=0(x+2)(x+1)=0x=2,1,(D)
解答:,,(G)

Solve the following problems (50%): 計算題(無計算過程者不予計分)

解答:F(x,y,z)=(xy,yz,zx)F=1+1+1=3By divergence theorem, SFndA=RFdV=R3dV=43π33123=54π
解答:(a)A=[131311113]det(AλI)=(λ+2)(λ2)(λ5)=0λ=2,2,5λ1=2(Aλ1I)v=0[331331115][x1x2x3]=0{x1+x2=0x3=0v=x2(110),choose v1=(110)λ2=2(Aλ2I)v=0[131311111][x1x2x3]=0{2x1+x3=02x2+x3=0v=x3(1/21/21),choose v2=(1/21/21)λ3=5(Aλ3I)v=0[431341112][x1x2x3]=0{x1=x2x2=x3v=x3(111),choose v3=(111)X=[v1v2v3]X=[11211121011],D=[200020005](b)[131100311010113001]R23R1R2,R3R1R3[131100082310022101]R1+1.5R3R1,R24R3R2[104120320010114022101]R2/10R2,R3/2R3[104120320011101102501112012]R2R3[104120320111201200111011025]R14R3R1,R2+R3R2[100110251100102511011000111011025]A1=[110251102511011011011025](c)A=XDX1A1=(XDX1)1=XD1X1{Y=XE=D1Y=[11211121011]
解答:V=R×i(t)+1Ci(t)dtL{V}=L{R×i(t)+1Ci(t)dt}Vs=RI(s)+1CI(s)s=(R+1Cs)I(s)I(s)=VR1s+1RCi(t)=L1{I(s)}=VRL1{1s+1RC}i(t)=VRet/RCGiven {V=5R=10KΩ=104ΩC=10μF=105Fi(t)={5104e10t,1<t<30,otherwise
解答:(a)f1(t)=cos(2t)e3|t|F(f1(t))=12πcos(2t)e3|t|eiωtdt=12π(0cos(2t)e3teiωtdt+0cos(2t)e3teiωtdt)=12π(0cos(2t)e(3iω)tdt+0cos(2t)e(3+iω)tdt)=122π(0(e2it+e2it)e(3iω)tdt+0(e2it+e2it)e(3+iω)tdt)=122π(0(e(3+(2ω)i)t+e(3(2+ω)i)t)dt+0(e(3+(ω2)i)t+e(3+(ω+2)i)t)dt)=122π([13+(2ω)ie(3+(2ω)i)t+13(2+ω)ie(3(2+ω)i)t]|0)+122π([1(3+(ω2)i)e(3+(ω2)i)t+1(3+(ω+2)i)e(3+(ω+2)i)t]|0)=122π(13+(2ω)i+13(2+ω)i+13+(ω2)i+13+(ω+2)i)=122π(69+(ω+2)2+69+(ω2)2)=32π(19+(ω+2)2+19+(ω2)2)(b)f2(t)=δ(t+12)δ(t12)F(f2(t))=12π(δ(t+12)δ(t12))eiωtdt=12π(eiω/2eiω/2)=22πisin(ω/2)=2πisinω2

==================== END ==================

解題僅供參考, 其他歷年試題及詳解

3 則留言:

  1. 勘誤一下
    1.第九題的積分(v-1)^-2那邊錯了少了負號,所以才沒答案(實際是有的)
    2.12題的(c),E那個對角矩陣寫錯了(應該單純筆誤)
    3.14題的(b),答案應該要多一個i.(e^(iw/2)-e(-iw/2)=2isin(w/2).)

    回覆刪除
    回覆
    1. 更正第一部分是第7題

      刪除
    2. 謝謝再幫我驗算一遍,已更正完畢!!

      刪除