國立中央大學112學年度碩士班考試
所別: 光電類
科目: 工程數學
Choose the correct answer(50%): 單選題,每題5分
解答:I=I0e−αx⇒II0=110=e−α×0.46×10−4⇒α≈5×104,故選(G)解答:v=y−2⇒v′=−2y−3y′⇒y′=−12y3v′代回原式⇒−12xy3v′=y+exy3⇒−12xv′=1y2+ex=v+ex⇒x2v′+2xv=−2xex⇒(x2v)′=−2xex⇒x2v=−2∫xexdx=−2(xex−ex)+c⇒v=1y2=−2(x−1ex−x−2ex)+cx−2⇒y=(cx−2−2x−1ex+2x−2ex)−1/2,故選(C)
解答:dydx=2+sinx3(y−1)2⇒∫3(y−1)2dy=∫(2+sinx)dx⇒(y−1)3=2x−cosx+c1y(0)=1⇒0=−1+c1⇒c1=1⇒(y−1)3=2x−cosx+1⇒y=(2x−cosx+1)1/3+1,故選(B)
解答:dRdt=2R⇒R=c1e2t,又R(0)=−1⇒c1=−1⇒R=−e2t⇒R(1)=−e2=−7.389,故選(G)
解答:1.9=2×(12)N⇒N=0.074⇒ elapsed time =0.074×(1.4×1010)=0.1036×1010 years,故選(A)
解答:3k/2=2⇒k=2×log32=1.2618,故選(C)
解答:y=xv(x)⇒y′=v+xv′代回原式⇒x2(v+xv′)=x2v2−x2v+x2⇒v+xv′=v2−v+1⇒xv′=v2−2v+1=(v−1)2⇒dv(v−1)2=dxx⇒−1v−1=lnx+c1⇒11−yx=lnx+c1⇒xx-y=lnx+c1y(1)=2⇒11-2=0+c1⇒c1=-1⇒xx-y=lnx-1x=2⇒22−y=ln2−1⇒y=2−2ln2−1=8.5178,故選(D)
解答:{P(x,y)=2x+2y2Q(x,y)=4xy+3y2⇒∂P∂y=4y=∂Q∂x⇒Exact⇒Φ(x,y)=∫Pdx=∫Qdy⇒∫(2x+2y2)dx=∫(4xy+3y2)dy⇒Φ(x,y)=x2+2xy2+ϕ(y)=2xy2+y3+ρ(x)⇒x2+2xy2+y3=c1 constant,故選(A)
解答:{P(x,y)=2x+1+2y2Q(x,y)=4xy+3y2⇒∂P∂y=4y=∂Q∂x⇒Exact⇒Φ(x,y)=∫Pdx=∫Qdy⇒∫(2x+1+2y2)dx=∫(4xy+3y2)dy⇒x2+x+2xy2+ϕ(y)=2xy2+y3+ρ(x)⇒Φ=x2+x+2xy2+y3=c1y(0)=−1⇒c1=−1⇒x2+x+2xy2+y3+1=0⇒y=1⇒x2+x+2x+2=0⇒x2+3x+2=0⇒(x+2)(x+1)=0⇒x=−2,−1,故選(D)
解答:未給初始值,其解常數項未知,故選(G)
Solve the following problems (50%): 計算題(無計算過程者不予計分)
解答:→F(x,y,z)=(x−y,y−z,z−x)⇒∇⋅→F=1+1+1=3By divergence theorem, ∬S→F⋅→ndA=∭R∇⋅→FdV=∭R3dV=43π⋅33⋅12⋅3=54π解答:(a)A=[131311113]⇒det(A−λI)=−(λ+2)(λ−2)(λ−5)=0⇒λ=−2,2,5λ1=−2⇒(A−λ1I)v=0⇒[331331115][x1x2x3]=0⇒{x1+x2=0x3=0⇒v=x2(−110),choose v1=(−110)λ2=2⇒(A−λ2I)v=0⇒[−1313−11111][x1x2x3]=0⇒{2x1+x3=02x2+x3=0⇒v=x3(−1/2−1/21),choose v2=(−1/2−1/21)λ3=5⇒(A−λ3I)v=0⇒[−4313−4111−2][x1x2x3]=0⇒{x1=x2x2=x3⇒v=x3(111),choose v3=(111)⇒X=[v1∣v2∣v3]⇒X=[−1−1211−121011],D=[−200020005](b)[131100311010113001]R2−3R1→R2,R3−R1→R3→[1311000−8−2−3100−22−101]R1+1.5R3→R1,R2−4R3→R2→[104−1203200−1011−40−22−101]−R2/10→R2,−R3/2→R3→[104−12032001−110−1102501−1120−12]R2↔R3→[104−1203201−1120−12001−110−11025]R1−4R3→R1,R2+R3→R2→[100−11025−11001025−110−110001−110−11025]⇒A−1=[−11025−11025−110−110−110−11025](c)A=XDX−1⇒A−1=(XDX−1)−1=XD−1X−1⇒{Y=XE=D−1⇒Y=[−1−1211−121011]
解答:V=R×i(t)+1C∫i(t)dt⇒L{V}=L{R×i(t)+1C∫i(t)dt}⇒Vs=R⋅I(s)+1C⋅I(s)s=(R+1Cs)I(s)⇒I(s)=VR⋅1s+1RC⇒i(t)=L−1{I(s)}=VR⋅L−1{1s+1RC}⇒i(t)=VRe−t/RCGiven {V=5R=10KΩ=104ΩC=10μF=10−5F⇒i(t)={5104e−10t,1<t<30,otherwise
解答:(a)f1(t)=cos(2t)e−3|t|⇒F(f1(t))=1√2π∫∞−∞cos(2t)e−3|t|e−iωtdt=1√2π(∫0−∞cos(2t)e3te−iωtdt+∫∞0cos(2t)e−3te−iωtdt)=1√2π(∫0−∞cos(2t)e(3−iω)tdt+∫∞0cos(2t)e−(3+iω)tdt)=12√2π(∫0−∞(e2it+e−2it)e(3−iω)tdt+∫∞0(e2it+e−2it)e−(3+iω)tdt)=12√2π(∫0−∞(e(3+(2−ω)i)t+e(3−(2+ω)i)t)dt+∫∞0(e−(3+(ω−2)i)t+e−(3+(ω+2)i)t)dt)=12√2π([13+(2−ω)ie(3+(2−ω)i)t+13−(2+ω)ie(3−(2+ω)i)t]|0−∞)+12√2π([1−(3+(ω−2)i)e−(3+(ω−2)i)t+1−(3+(ω+2)i)e−(3+(ω+2)i)t]|∞0)=12√2π(13+(2−ω)i+13−(2+ω)i+13+(ω−2)i+13+(ω+2)i)=12√2π(69+(ω+2)2+69+(ω−2)2)=3√2π(19+(ω+2)2+19+(ω−2)2)(b)f2(t)=δ(t+12)−δ(t−12)⇒F(f2(t))=1√2π∫∞−∞(δ(t+12)−δ(t−12))e−iωtdt=1√2π(eiω/2−e−iω/2)=2√2πisin(ω/2)=√2πisinω2
==================== END ==================
解題僅供參考, 其他歷年試題及詳解
勘誤一下
回覆刪除1.第九題的積分(v-1)^-2那邊錯了少了負號,所以才沒答案(實際是有的)
2.12題的(c),E那個對角矩陣寫錯了(應該單純筆誤)
3.14題的(b),答案應該要多一個i.(e^(iw/2)-e(-iw/2)=2isin(w/2).)
更正第一部分是第7題
刪除謝謝再幫我驗算一遍,已更正完畢!!
刪除