國立中央大學112學年度碩士班考試
所別: 光電類
科目: 工程數學
Choose the correct answer(50%): 單選題,每題5分
解答:I=I0e−αx⇒II0=110=e−α×0.46×10−4⇒α≈5×104,故選(G)解答:v=y−2⇒v′=−2y−3y′⇒y′=−12y3v′代回原式⇒−12xy3v′=y+exy3⇒−12xv′=1y2+ex=v+ex⇒x2v′+2xv=−2xex⇒(x2v)′=−2xex⇒x2v=−2∫xexdx=−2(xex−ex)+c⇒v=1y2=−2(x−1ex−x−2ex)+cx−2⇒y=(cx−2−2x−1ex+2x−2ex)−1/2,故選(C)
解答:dydx=2+sinx3(y−1)2⇒∫3(y−1)2dy=∫(2+sinx)dx⇒(y−1)3=2x−cosx+c1y(0)=1⇒0=−1+c1⇒c1=1⇒(y−1)3=2x−cosx+1⇒y=(2x−cosx+1)1/3+1,故選(B)
解答:dRdt=2R⇒R=c1e2t,又R(0)=−1⇒c1=−1⇒R=−e2t⇒R(1)=−e2=−7.389,故選(G)
解答:1.9=2×(12)N⇒N=0.074⇒ elapsed time =0.074×(1.4×1010)=0.1036×1010 years,故選(A)
解答:3k/2=2⇒k=2×log32=1.2618,故選(C)
解答:y=xv(x)⇒y′=v+xv′代回原式⇒x2(v+xv′)=x2v2−x2v+x2⇒v+xv′=v2−v+1⇒xv′=v2−2v+1=(v−1)2⇒dv(v−1)2=dxx⇒−1v−1=lnx+c1⇒11−yx=lnx+c1⇒xx-y=lnx+c1y(1)=2⇒11-2=0+c1⇒c1=-1⇒xx-y=lnx-1x=2⇒22−y=ln2−1⇒y=2−2ln2−1=8.5178,故選(D)
解答:{P(x,y)=2x+2y2Q(x,y)=4xy+3y2⇒∂P∂y=4y=∂Q∂x⇒Exact⇒Φ(x,y)=∫Pdx=∫Qdy⇒∫(2x+2y2)dx=∫(4xy+3y2)dy⇒Φ(x,y)=x2+2xy2+ϕ(y)=2xy2+y3+ρ(x)⇒x2+2xy2+y3=c1 constant,故選(A)
解答:{P(x,y)=2x+1+2y2Q(x,y)=4xy+3y2⇒∂P∂y=4y=∂Q∂x⇒Exact⇒Φ(x,y)=∫Pdx=∫Qdy⇒∫(2x+1+2y2)dx=∫(4xy+3y2)dy⇒x2+x+2xy2+ϕ(y)=2xy2+y3+ρ(x)⇒Φ=x2+x+2xy2+y3=c1y(0)=−1⇒c1=−1⇒x2+x+2xy2+y3+1=0⇒y=1⇒x2+x+2x+2=0⇒x2+3x+2=0⇒(x+2)(x+1)=0⇒x=−2,−1,故選(D)
解答:未給初始值,其解常數項未知,故選(G)
Solve the following problems (50%): 計算題(無計算過程者不予計分)
解答:→F(x,y,z)=(x−y,y−z,z−x)⇒∇⋅→F=1+1+1=3By divergence theorem, ∬解答:\textbf{(a)} \;A=\left[ \begin{matrix}1 & 3 & 1\\3 & 1 & 1\\1 & 1 & 3 \end{matrix} \right] \Rightarrow \det(A-\lambda I)=-(\lambda+2)(\lambda -2)(\lambda-5)=0 \Rightarrow \lambda=-2,2,5\\ \lambda_1=-2 \Rightarrow (A-\lambda_1 I)v=0 \Rightarrow \begin{bmatrix} 3 & 3 & 1 \\3 & 3 & 1 \\1 & 1 & 5\end{bmatrix} \begin{bmatrix} x_1\\x_2\\ x_3 \end{bmatrix} =0 \Rightarrow \cases{x_1+x_2=0\\ x_3=0} \\ \qquad \Rightarrow v=x_2\begin{pmatrix}-1\\ 1\\ 0 \end{pmatrix}, \text{choose }v_1= \begin{pmatrix} -1\\ 1\\ 0 \end{pmatrix} \\ \lambda_2=2 \Rightarrow (A-\lambda_2 I)v=0 \Rightarrow \begin{bmatrix} -1 & 3 & 1 \\3 & -1 & 1 \\1 & 1 & 1\end{bmatrix} \begin{bmatrix} x_1\\x_2\\ x_3 \end{bmatrix} =0 \Rightarrow \cases{2x_1+ x_3=0 \\ 2x_2+ x_3=0} \\ \qquad \Rightarrow v=x_3 \begin{pmatrix}-1/2\\ -1/2\\ 1 \end{pmatrix}, \text{choose }v_2= \begin{pmatrix}-1/2\\ -1/2\\ 1 \end{pmatrix}\\ \lambda_3=5 \Rightarrow (A-\lambda_3 I)v=0 \Rightarrow \begin{bmatrix} -4 & 3 & 1 \\3 & -4 & 1 \\1 & 1 & -2 \end{bmatrix} \begin{bmatrix} x_1\\x_2\\ x_3 \end{bmatrix} =0 \Rightarrow \cases{x_1 =x_2\\ x_2=x_3} \\ \qquad \Rightarrow v=x_3 \begin{pmatrix}1\\ 1\\ 1 \end{pmatrix}, \text{choose }v_3= \begin{pmatrix}1\\ 1\\ 1 \end{pmatrix} \\ \Rightarrow X=[v_1 \mid v_2\mid v_3]\Rightarrow \bbox[red, 2pt]{X = \begin{bmatrix} -1 & \frac{-1}{2} & 1 \\1 & \frac{-1}{2} & 1 \\ 0 & 1 & 1 \end{bmatrix}}, \bbox[red, 2pt]{D=\begin{bmatrix}-2 & 0 & 0 \\0 & 2 & 0 \\0 & 0 & 5 \end{bmatrix}} \\\textbf{(b)} \;\left[\begin{matrix}1 & 3 & 1 & 1 & 0 & 0\\3 & 1 & 1 & 0 & 1 & 0\\1 & 1 & 3 & 0 & 0 & 1\end{matrix}\right] \xrightarrow{ R_2-3R_1\to R_2, R_3-R_1\to R_3} \left[ \begin{matrix}1 & 3 & 1 & 1 & 0 & 0\\0 & -8 & -2 & -3 & 1 & 0\\0 & -2 & 2 & -1 & 0 & 1\end{matrix}\right] \\ \quad \xrightarrow{ R_1 +1.5R_3\to R_1,R_2-4R_3\to R_2} \left[ \begin{matrix}1 & 0 & 4 & - \frac{1}{2} & 0 & \frac{3}{2}\\0 & 0 & -10 & 1 & 1 & -4\\0 & -2 & 2 & -1 & 0 & 1\end{matrix}\right] \xrightarrow{-R_2/10 \to R_2, -R_3/2\to R_3} \\\left[ \begin{matrix}1 & 0 & 4 & - \frac{1}{2} & 0 & \frac{3}{2}\\0 & 0 & 1 & - \frac{1}{10} & - \frac{1}{10} & \frac{2}{5}\\0 & 1 & -1 & \frac{1}{2} & 0 & - \frac{1}{2}\end{matrix}\right] \xrightarrow{R_2 \leftrightarrow R_3} \left[ \begin{matrix}1 & 0 & 4 & - \frac{1}{2} & 0 & \frac{3}{2}\\0 & 1 & -1 & \frac{1}{2} & 0 & - \frac{1}{2}\\0 & 0 & 1 & - \frac{1}{10} & - \frac{1}{10} & \frac{2}{5} \end{matrix} \right] \\ \xrightarrow{R_1-4R_3\to R_1, R_2+R_3\to R_2} \left[\begin{matrix}1 & 0 & 0 & - \frac{1}{10} & \frac{2}{5} & - \frac{1}{10}\\0 & 1 & 0 & \frac{2}{5} & - \frac{1}{10} & - \frac{1}{10}\\0 & 0 & 1 & - \frac{1}{10} & - \frac{1}{10} & \frac{2}{5}\end{matrix}\right] \Rightarrow \bbox[red, 2pt]{A^{-1} =\left[ \begin{matrix} - \frac{1}{10} & \frac{2}{5} & - \frac{1}{10}\\ \frac{2}{5} & - \frac{1}{10} & - \frac{1}{10}\\ - \frac{1}{10} & - \frac{1}{10} & \frac{2}{5} \end{matrix} \right]} \\\textbf{(c)} \;A=XDX^{-1} \Rightarrow A^{-1}=(XDX^{-1})^{-1} = XD^{-1} X^{-1} \Rightarrow \cases{Y=X\\ E=D^{-1}} \\ \Rightarrow \bbox[red, 2pt]{Y = \begin{bmatrix} -1 & \frac{-1}{2} & 1 \\1 & \frac{-1}{2} & 1 \\ 0 & 1 & 1 \end{bmatrix}}
解答:V=R\times i(t) +{1\over C}\int i(t)\, dt \Rightarrow L\{V\} = L\left\{ R\times i(t) +{1\over C}\int i(t)\, dt\right\} \\ \Rightarrow {V\over s}=R\cdot I(s) +{1\over C}\cdot {I(s)\over s} =(R+{1\over Cs})I(s) \Rightarrow I(s)= {V\over R}\cdot {1\over s+{1\over RC}} \\ \Rightarrow i(t)= L^{-1}\{ I(s)\} ={V\over R}\cdot L^{-1} \left\{ {1\over s+{1\over RC}} \right\} \Rightarrow i(t)={V\over R} e^{-t/RC} \\ \text{Given } \cases{V= 5\\ R=10K\Omega =10^4 \Omega \\ C=10\mu F= 10^{-5}F} \Rightarrow \bbox[red, 2pt]{i(t)=\cases{{5\over 10^4} e^{-10t},1\lt t\lt 3 \\ 0, \text{otherwise}}}
解答:\textbf{(a)}\; f_1(t)=\cos(2t) e^{-3|t|} \Rightarrow \mathcal F(f_1(t))={1\over \sqrt{2\pi}} \int_{-\infty}^\infty \cos(2t) e^{-3|t|} e^{-i\omega t}\,dt \\={1\over \sqrt{2\pi}} \left( \int_{-\infty}^0 \cos(2t)e^{3t} e^{-i\omega t}\,dt +\int_0^\infty \cos(2t) e^{-3t} e^{-i\omega t}\,dt\right) \\={1\over \sqrt{2\pi}} \left( \int_{-\infty}^0 \cos(2t)e^{(3-i\omega)t} \,dt +\int_0^\infty \cos(2t) e^{-(3+ i\omega)t} \,dt\right) \\={1\over 2\sqrt{2\pi}} \left( \int_{-\infty}^0 (e^{2it}+ e^{-2it}) e^{(3-i \omega)t} \,dt +\int_0^\infty (e^{2it}+ e^{-2it}) e^{-(3+i\omega)t} \,dt\right) \\={1\over 2 \sqrt{2 \pi}} \left( \int_{-\infty}^0 (e^{(3+(2-\omega)i) t}+ e^{(3-(2+\omega)i)t}) \,dt +\int_0^\infty (e^{-(3+(\omega-2)i)t}+ e^{-(3+ (\omega+2)i)t}) \,dt\right) \\={1\over 2\sqrt{2\pi}} \left( \left. \left[{1\over 3+(2-\omega)i} e^{(3+(2-\omega)i) t} +{1\over 3-(2+\omega)i} e^{(3- (2+ \omega)i)t} \right] \right|_{-\infty}^0 \right) \\\qquad + {1\over 2\sqrt{2\pi}} \left( \left.\left[{1\over -(3+(\omega-2)i)} e^{-(3+(\omega-2)i) t} +{1\over -(3+ (\omega+2)i)} e^{-(3+ (\omega+2)i)t} \right] \right|_0^{ \infty} \right) \\={1\over 2\sqrt{2\pi}} \left( {1\over 3+(2-\omega)i} +{1\over 3-(2+\omega)i} +{1\over 3+(\omega-2)i} +{1\over 3+ (\omega+2)i} \right)\\={1\over 2\sqrt{2\pi}} \left({6\over 9+(\omega+2)^2} +{6\over 9+(\omega-2)^2} \right) =\bbox[red, 2pt]{{3\over \sqrt{2\pi}} \left({1 \over 9+(\omega+2)^2} +{1\over 9+(\omega-2)^2} \right)} \\\textbf{(b)}\; f_2(t)=\delta(t+{1\over 2})-\delta(t-{1\over 2}) \Rightarrow \mathcal F(f_2(t))={1\over \sqrt{2\pi}} \int_{-\infty}^\infty (\delta(t+{1\over 2})-\delta(t-{1\over 2})) e^{-i\omega t}\,dt \\={1\over \sqrt{2\pi}}\left(e^{i\omega/2}-e^{-i\omega/2} \right) ={2\over \sqrt{2\pi}} i\sin(\omega/2) = \bbox[red, 2pt]{\sqrt{2\over \pi} i\sin{\omega \over 2}}
==================== END ==================
解題僅供參考, 其他歷年試題及詳解
勘誤一下
回覆刪除1.第九題的積分(v-1)^-2那邊錯了少了負號,所以才沒答案(實際是有的)
2.12題的(c),E那個對角矩陣寫錯了(應該單純筆誤)
3.14題的(b),答案應該要多一個i.(e^(iw/2)-e(-iw/2)=2isin(w/2).)
更正第一部分是第7題
刪除謝謝再幫我驗算一遍,已更正完畢!!
刪除