Processing math: 100%

2024年3月6日 星期三

110年北科大自動化碩士班-工程數學詳解

 國立臺北科技大學110學年度碩士班招生考試

自動化科技研究所
工程數學

解答:[120124143639]=[1002x03yz][12010uvw0000]=[12012ux+4vxwx+23uy+6vywy+3]{ux+4=4vx=1wx+2=4uy+6=6vy=3wy+3=9{ux=0vx=1wx=2uy=0vy=3wy=6z is don't care !!(b)B=[405335122][BI]=[405100335010122001]R14R3R1,R23R3R2[083104031013122001]R3R3,R1R1,R2R2[083104031013122001]R1R3,(1/3)R2R2[12200101130131083104]R1+2R2R1,8R2+R3R3[104302310113013100131834]4R3+R1R1,R2R3R2[1004101501013500131834]3R3R3[100410150101350013812]B1=[410151353812]


解答:(a)A=[122436]B=ATA=[123246][122436]=[14282856]det(BλI)=(14λ)(56λ)282=λ(λ70)=0eigenvalues: 0,70(b)C=AAT=[51015102030153045]det(CλI)=λ2(70λ)=0λ=0,70λ1=0(Aλ1I)x=0[51015102030153045][x1x2x3]=0x1+2x2+3x3=0x=s(210)+t(301),s,tR, choose v1=(210),v2=(301)λ2=70(Aλ2I)x=0[651015105030153025][x1x2x3]=0{3x1=x33x2=2x3x=k(1/32/31),kR,choose v3=(123)Applying Gram-Schmidt process, e1=v1v1=(2/51/50),e2=v2(v2e1)e1v2(v2e1)e1=(3/706/705/70)e3=v3(v3e2)e2(v3e1)e1v3(v3e2)e2(v3e1)e1=(1/142/143/14)orthonormal eigenvectors of AAT:(2/51/50),(3/706/705/70),(1/142/143/14)



解答:(a)v=(2,3) is perpendicular to the line, due to (2,3)(3,2)=0,where (-3,2) is the directional vector of the line.(b)There are n column vectors nullity(A)=0
解答:(a)det(A)=|5400067000345672101221001|=5|7000456710121001|4|6000356720122001|=57|567012001|46|567012001|=575465=55(b)det(B)=|1bb2bb2b3b2b3b4|=b|11b2bbb3b2b2b4|=0

解答:(a)A=[3/21/21/23/2]=[cos(5π/6)sin(5π/6)sin(5π/6)cos(5π/6)]T rotates points in the xy plane counterclockwise through an angle θ about the origin (b)5π6×2011=837×(2π)+11π6A2011=[cos(11π/6)sin(11π/6)sin(11π/6)cos(11π/6)]=[3/21/21/23/2]

==================== END ======================
解題僅供參考,其他歷年試題及詳解

2 則留言:

  1. 第三題的(b):A 它的每一行向量都是線性獨立的那rank(A)=n,而nullity(A)=0吧?

    回覆刪除