國立臺北科技大學110學年度碩士班招生考試
自動化科技研究所
工程數學
解答:[120124143639]=[1002x03yz][12010uvw0000]=[12012ux+4vxwx+23uy+6vywy+3]⇒{ux+4=4vx=1wx+2=4uy+6=6vy=3wy+3=9⇒{ux=0vx=1wx=2uy=0vy=3wy=6⇒z is don't care !!(b)B=[−405−335−122]⇒[B∣I]=[−405100−335010−122001]R1−4R3→R1,R2−3R3→R2→[0−8−310−40−3−101−3−122001]−R3→R3,−R1→R1,−R2→R2→[083−1040310−131−2−200−1]R1↔R3,(1/3)R2→R2→[1−2−200−101130−131083−104]R1+2R2→R1,−8R2+R3→R3→[10−430−23101130−1310013−183−4]4R3+R1→R1,R2−R3→R2→[100−410−150101−350013−183−4]3R3→R3→[100−410−150101−35001−38−12]⇒B−1=[−410−151−35−38−12]
解答:(a)det(A)=|5400067000345672101221001|=5|7000456710121001|−4|6000356720122001|=5⋅7|567012001|−4⋅6|567012001|=5⋅7⋅5−4⋅6⋅5=55(b)det(B)=|1bb2bb2b3b2b3b4|=b|11b2bbb3b2b2b4|=0

解答:(a)A=[−√3/2−1/21/2−√3/2]=[cos(5π/6)−sin(5π/6)sin(5π/6)cos(5π/6)]⇒T rotates points in the xy plane counterclockwise through an angle θ about the origin (b)5π6×2011=837×(2π)+11π6⇒A2011=[cos(11π/6)−sin(11π/6)sin(11π/6)cos(11π/6)]=[√3/21/2−1/2√3/2]
==================== END ======================
解題僅供參考,其他歷年試題及詳解
第三題的(b):A 它的每一行向量都是線性獨立的那rank(A)=n,而nullity(A)=0吧?
回覆刪除寫太快了, 應該是0, 謝!
刪除