Loading [MathJax]/jax/output/CommonHTML/jax.js

2024年3月2日 星期六

112年成大地球科學碩士班-應用數學詳解

 國立成功大學112學年度碩士班招生考試

編號: 50
系所: 地球科學
科目:應用數學


解答:1.y=1+y211+y2dy=dxtan1y=x+c1y=tan(x+c1)2.y=sec2y=1cos2ycos2ydy=dx14sin(2y)+12y=x+c13.2xydx+x2dy=02xdx=1ydy2lnx+c1=lnyln1y=lnc2x2y=1c2x2y=c3x24.y+y=0λ2+1=0λ=±iy=c1cosx+c2sinx5.y=xmy=mxm1y=m(m1)xm2x2y+1.5xy0.5y=(m(m1)+1.5m0.5)ym=0m2+0.5m0.5=0(m0.5)(m+1)=0m=0.5,1y=c1x+c2x6.y+y=0yh=c1cosx+c2sinxyp=Ax2+Bx+Cyp=2Ax+Byp=2Ayp+yp=Ax2+Bx+C+2A=0.001x2{A=0.001B=0C=0.002yp=0.001x20.002y=yh+ypy=c1cosx+c2sinx+0.001x20.0027.y+5y+4y=0λ2+5λ+4=0(λ+4)(λ+1)=0λ=4,1yh=c1e4x+c2exyp=Ae3xyp=3Ae3xyp=9Ae3xyp+5yp+4yp=2Ae3x=10e3x2A=10A=5yp=5e3xy=yh+ypy=c1e4x+c2ex5e3x8.y+y=0yh=c1cosx+c2sinxyp=Axcosx+Bxsinxyp=AcosxAxsinx+Bsinx+Bxcosxyp=2Asinx+2BcosxAxcosxBxsinxyp+yp=2Asinx+2Bcosx=cosxsinxA=B=12yp=12x(cosx+sinx)y=yh+ypy=c1cosx+c2sinx+12x(cosx+sinx)
解答:A=[466132152]det(AλI)=(λ1)(λ2)2=0λ=1,2λ1=1(Aλ1I)v=0[366122153][x1x2x3]=0{x1+43x3=0x2+13x3=0v=x3(43131),choose v1=(43131)λ2=2(Aλ2I)v=0[266112154][x1x2x3]=0{x1+32x3=0x2+12x3=0v=x3(32121),choose v2=(32121)eighenvalues: 1,2, eigenvectros: (43131),(32121)


解答:A=[112311134][AI]=[112100311010134001]R23R1R2,R1+R3R3[112100027310022101]R1+0.5R2R1,R3R2R3[103212120027310005411]R2/2R2,R3/5R3[103212120017232120001451515]R1(3/2)R3R1,R2(7/2)R3R2[10071015310010131015710001451515]A1=[71015310131015710451515]


解答:a0=12πππ(x+π)dx=12π[12x2+πx]|ππ=πan=1πππ(x+π)cos(nx)dx=1π[xnsin(nx)+1n2cos(nx)+πnsin(nx) ]|ππ=0bn=1πππ(x+π)sin(nx)dx=2n(1)nf(x)=a0+n=1bnsin(nx)f(x)=πn=12n(1)nsin(nx)


解答:f(x)=x2f(x)=f(x)f is even bn=0,nNa0=1211x2dx=12[13x3]|11=13an=11x2cos(nπx)dx=4n2π2(1)nf(x)=a0+n=1ancos(nπx)f(x)=13+4π2n=11n2(1)ncos(nπx)


解答:u(x,t)=X(x)T(t)ut=c22ux2XT=c2XTXX=Tc2T=k{XkX=0Tkc2T=0, then B.C: {u(0,t)=0u(L,t)=0{X(0)T(t)=0X(L)T(t)=0{X(0)=0X(L)=0Case 1: k=μ2>0(μ>0)Xμ2X=0X=c1eμx+c2eμxB.C: {X(0)=c1+c2=0X(L)=c1eμL+c2eμL=0c1(e2μL1)=0c1=0c2=0X=0Case 2: k=0X=0X=ax+b B.C: {X(0)=b=0X(L)=aL+b=0X=0Case 3: k=μ2<0(μ>0)X2+μ2X=0X=c1cos(μx)+c2sin(μx)B.C: {X(0)=c1=0X(L)=c2sin(μL)=0sin(μL)=0μL=nπμ=μn=nπLXn=sin(nπxL)T=c2kT=c2μ2TTn=ec2μ2t=ec2n2π2/L2un(x,t)=Xn(x)Tn(t)=sin(nπxL)ec2n2π2t/L,nNu(x,t)=a0+n=1ansin(nπxL)ec2n2π2t/LI.C: u(x,0)=f(x)=a0+n=1ansin(nπxL)u(x,t)=a0+n=1ansin(nπxL)ec2n2π2t/L, where {a0=1LL0f(x)dxan=2LL0f(x)sin(nπx)dx


==================== END ======================
解題僅供參考,其他歷年試題及詳解

沒有留言:

張貼留言