Loading [MathJax]/jax/element/mml/optable/BasicLatin.js

2024年3月2日 星期六

112年成大地球科學碩士班-應用數學詳解

 國立成功大學112學年度碩士班招生考試

編號: 50
系所: 地球科學
科目:應用數學


解答:1.y=1+y211+y2dy=dxtan1y=x+c1y=tan(x+c1)2.y=sec2y=1cos2ycos2ydy=dx14sin(2y)+12y=x+c13.2xydx+x2dy=02xdx=1ydy2lnx+c1=lnyln1y=lnc2x2y=1c2x2y=c3x24.y+y=0λ2+1=0λ=±iy=c1cosx+c2sinx5.y=xmy=mxm1y=m(m1)xm2x2y+1.5xy0.5y=(m(m1)+1.5m0.5)ym=0m2+0.5m0.5=0(m0.5)(m+1)=0m=0.5,1y=c1x+c2x6.y+y=0yh=c1cosx+c2sinxyp=Ax2+Bx+Cyp=2Ax+Byp=2Ayp+yp=Ax2+Bx+C+2A=0.001x2{A=0.001B=0C=0.002yp=0.001x20.002y=yh+ypy=c1cosx+c2sinx+0.001x20.0027.y+5y+4y=0λ2+5λ+4=0(λ+4)(λ+1)=0λ=4,1yh=c1e4x+c2exyp=Ae3xyp=3Ae3xyp=9Ae3xyp+5yp+4yp=2Ae3x=10e3x2A=10A=5yp=5e3xy=yh+ypy=c1e4x+c2ex5e3x8.y+y=0yh=c1cosx+c2sinxyp=Axcosx+Bxsinxyp=AcosxAxsinx+Bsinx+Bxcosxyp=2Asinx+2BcosxAxcosxBxsinxyp+yp=2Asinx+2Bcosx=cosxsinxA=B=12yp=12x(cosx+sinx)y=yh+ypy=c1cosx+c2sinx+12x(cosx+sinx)
解答:A=[466132152]det


解答:A=\left[\begin{matrix}1 & -1 & -2\\3 & -1 & 1\\-1 & 3 & 4\end{matrix}\right] \Rightarrow [A\mid I]= \left[\begin{matrix}1 & -1 & -2 & 1 & 0 & 0\\3 & -1 & 1 & 0 & 1 & 0\\-1 & 3 & 4 & 0 & 0 & 1\end{matrix}\right] \xrightarrow{R_2-3R_1 \to R_2, R_1+R_3\to R_3} \\ \left[\begin{matrix}1 & -1 & -2 & 1 & 0 & 0\\0 & 2 & 7 & -3 & 1 & 0\\0 & 2 & 2 & 1 & 0 & 1\end{matrix}\right] \xrightarrow{R_1+0.5R_2\to R_1,R_3-R_2\to R_3} \left[\begin{matrix}1 & 0 & \frac{3}{2} & - \frac{1}{2} & \frac{1}{2} & 0\\0 & 2 & 7 & -3 & 1 & 0\\0 & 0 & -5 & 4 & -1 & 1\end{matrix}\right] \xrightarrow{R_2/2\to R_2, -R_3/5 \to R_3} \\ \left[\begin{matrix}1 & 0 & \frac{3}{2} & - \frac{1}{2} & \frac{1}{2} & 0\\0 & 1 & \frac{7}{2} & - \frac{3}{2} & \frac{1}{2} & 0\\0 & 0 & 1 & - \frac{4}{5} & \frac{1}{5} & - \frac{1}{5}\end{matrix}\right] \xrightarrow{R_1-(3/2)R_3\to R_1, R_2-(7/2) R_3 \to R_2} \left[\begin{matrix}1 & 0 & 0 & \frac{7}{10} & \frac{1}{5} & \frac{3}{10}\\0 & 1 & 0 & \frac{13}{10} & - \frac{1}{5} & \frac{7}{10}\\0 & 0 & 1 & - \frac{4}{5} & \frac{1}{5} & - \frac{1}{5}\end{matrix}\right] \\ \Rightarrow A^{-1}= \bbox[red, 2pt]{\left[ \begin{matrix} \frac{7}{10} & \frac{1}{5} & \frac{3}{10}\\\frac{13}{10} & - \frac{1}{5} & \frac{7}{10}\\- \frac{4}{5} & \frac{1}{5} & - \frac{1}{5}\end{matrix}\right]}


解答:a_0= {1\over 2\pi} \int_{-\pi}^\pi (x+\pi)\,dx ={1\over 2\pi} \left. \left[ {1\over 2}x^2+\pi x \right] \right|_{-\pi}^\pi =\pi \\a_n={1\over \pi} \int_{-\pi}^\pi (x+\pi)\cos(nx)\,dx ={1\over \pi}\left. \left[ {x\over n}\sin(nx)+ {1\over n^2}\cos(nx)+ {\pi\over n}\sin (nx)\ \right] \right|_{-\pi}^\pi=0\\ b_n={1\over \pi} \int_{-\pi}^\pi (x+\pi)\sin(nx)\,dx =-{2\over n}(-1)^n \\ \Rightarrow f(x)=a_0+ \sum_{n=1}^\infty b_n\sin(nx)\Rightarrow \bbox[red, 2pt]{f(x) =\pi-\sum_{n=1}^\infty {2\over n}(-1)^n\sin(nx)}


解答:f(x)=x^2 \Rightarrow f(-x)=f(x) \Rightarrow f \text{ is even } \Rightarrow b_n=0, n \in \mathbb N\\ a_0={1\over 2} \int_{-1}^1 x^2\,dx = {1\over 2}\left. \left[ {1\over 3}x^3 \right] \right|_{-1}^1 ={1\over 3} \\ a_n= \int_{-1}^1 x^2 \cos(n\pi x)\,dx ={4\over n^2\pi^2}(-1)^n \\ \Rightarrow f(x)=a_0+ \sum_{n=1}^\infty a_n\cos(n\pi x) \Rightarrow  \bbox[red, 2pt]{f(x)={1\over 3}+ {4\over \pi^2}  \sum_{n=1}^\infty{1\over n^2}(-1)^n \cos(n\pi x)}


解答:u(x,t)=X(x)T(t) \Rightarrow \frac{\partial u}{\partial t}=c^2 \frac{\partial^2 u}{\partial x^2} \Rightarrow XT'=c^2X''T \Rightarrow {X'' \over X}= {T'\over c^2T} =k\\ \Rightarrow \cases{X''-kX=0\\ T'-kc^2T=0} ,\text{ then B.C: } \cases{u(0,t)=0\\ u(L,t)=0} \Rightarrow \cases{X(0)T(t)=0\\ X(L)T(t)=0} \Rightarrow \cases{X(0)=0\\ X(L)=0} \\ \textbf{Case 1: }k= \mu^2 \gt 0(\mu\gt 0) \Rightarrow X''-\mu^2X=0 \Rightarrow X=c_1e^{\mu x} +c_2 e^{-\mu x} \\ \qquad \text{B.C: }\cases{X(0)=c_1+c_2=0 \\ X(L)=c_1e^{\mu L} +c_2e^{-\mu L} =0} \Rightarrow c_1(e^{2\mu L}-1)=0 \Rightarrow c_1=0 \Rightarrow c_2=0 \Rightarrow X=0\\ \textbf{Case 2: }k=0 \Rightarrow X''=0 \Rightarrow X=ax+b \Rightarrow \text{ B.C: }\cases{X(0)=b=0\\ X(L)=aL+b=0} \Rightarrow X=0\\ \textbf{Case 3: }k=-\mu^2 \lt 0\;(\mu \gt 0) \Rightarrow X^2+\mu^2X=0 \Rightarrow X=c_1\cos (\mu x)+ c_2\sin (\mu x) \\ \qquad \Rightarrow \text{B.C: }\cases{X(0)=c_1=0 \\ X(L)=c_2 \sin(\mu L)=0} \Rightarrow \sin(\mu L)=0 \Rightarrow \mu L=n\pi \Rightarrow \mu=\mu_n = {n\pi \over L} \\ \qquad \Rightarrow X_n=\sin({n\pi x\over L}) \Rightarrow T'=c^2kT= -c^2\mu^2 T \Rightarrow T_n=e^{-c^2\mu^2 t} =e^{-c^2 n^2 \pi^2/L^2} \\ \Rightarrow u_n(x,t)=X_n(x)T_n(t) = \sin({n\pi x\over L})e^{-c^2 n^2 \pi^2t/L}, n\in \mathbb N \\ \Rightarrow u(x,t)= a_0+ \sum_{n=1}^\infty a_n  \sin({n\pi x\over L})e^{-c^2 n^2 \pi^2t/L} \\ \Rightarrow \text{I.C: } u(x,0)=f(x)=  a_0+ \sum_{n=1}^\infty a_n  \sin({n\pi x\over L}) \\ \Rightarrow \bbox[red, 2pt]{ u(x,t)=a_0+ \sum_{n=1}^\infty a_n  \sin({n\pi x\over L})e^{-c^2 n^2 \pi^2t/L}, \text{ where } \cases{a_0={1\over L}\int_0^L f(x)\,dx \\ a_n= {2\over L}\int_0^L f(x)\sin(n\pi x)\,dx}}


==================== END ======================
解題僅供參考,其他歷年試題及詳解

沒有留言:

張貼留言