國立成功大學112學年度碩士班招生考試
編號: 50
系所: 地球科學
科目:應用數學
解答:
1.y′=1+y2⇒11+y2dy=dx⇒tan−1y=x+c1⇒y=tan(x+c1)2.y′=sec2y=1cos2y⇒cos2ydy=dx⇒14sin(2y)+12y=x+c13.2xydx+x2dy=0⇒2xdx=−1ydy⇒2lnx+c1=−lny⇒ln1y=lnc2x2⇒y=1c2x2⇒y=c3x24.y″+y=0⇒λ2+1=0⇒λ=±i⇒y=c1cosx+c2sinx5.y=xm⇒y′=mxm−1⇒y″=m(m−1)xm−2⇒x2y″+1.5xy′−0.5y=(m(m−1)+1.5m−0.5)ym=0⇒m2+0.5m−0.5=0⇒(m−0.5)(m+1)=0⇒m=0.5,−1⇒y=c1√x+c2x6.y″+y=0⇒yh=c1cosx+c2sinxyp=Ax2+Bx+C⇒y′p=2Ax+B⇒y″p=2A⇒y″p+yp=Ax2+Bx+C+2A=0.001x2⇒{A=0.001B=0C=−0.002⇒yp=0.001x2−0.002⇒y=yh+yp⇒y=c1cosx+c2sinx+0.001x2−0.0027.y″+5y′+4y=0⇒λ2+5λ+4=0⇒(λ+4)(λ+1)=0⇒λ=−4,−1⇒yh=c1e−4x+c2e−xyp=Ae−3x⇒y′p=−3Ae−3x⇒y″p=9Ae−3x⇒y″p+5y′p+4yp=−2Ae−3x=10e−3x⇒−2A=10⇒A=−5⇒yp=−5e−3x⇒y=yh+yp⇒y=c1e−4x+c2e−x−5e−3x8.y″+y=0⇒yh=c1cosx+c2sinxyp=Axcosx+Bxsinx⇒y′p=Acosx−Axsinx+Bsinx+Bxcosx⇒y″p=−2Asinx+2Bcosx−Axcosx−Bxsinx⇒y″p+yp=−2Asinx+2Bcosx=cosx−sinx⇒A=B=12⇒yp=12x(cosx+sinx)⇒y=yh+yp⇒y=c1cosx+c2sinx+12x(cosx+sinx)解答:
A=[466132−1−5−2]⇒det(A−λI)=−(λ−1)(λ−2)2=0⇒λ=1,2λ1=1⇒(A−λ1I)v=0⇒[366122−1−5−3][x1x2x3]=0⇒{x1+43x3=0x2+13x3=0⇒v=x3(−43−131),choose v1=(−43−131)λ2=2⇒(A−λ2I)v=0⇒[266112−1−5−4][x1x2x3]=0⇒{x1+32x3=0x2+12x3=0⇒v=x3(−32−121),choose v2=(−32−121)⇒eighenvalues: 1,2, eigenvectros: (−43−131),(−32−121)
解答:
A=[1−1−23−11−134]⇒[A∣I]=[1−1−21003−11010−134001]R2−3R1→R2,R1+R3→R3→[1−1−2100027−310022101]R1+0.5R2→R1,R3−R2→R3→[1032−12120027−31000−54−11]R2/2→R2,−R3/5→R3→[1032−121200172−32120001−4515−15]R1−(3/2)R3→R1,R2−(7/2)R3→R2→[100710153100101310−15710001−4515−15]⇒A−1=[710153101310−15710−4515−15]
解答:
a0=12π∫π−π(x+π)dx=12π[12x2+πx]|π−π=πan=1π∫π−π(x+π)cos(nx)dx=1π[xnsin(nx)+1n2cos(nx)+πnsin(nx) ]|π−π=0bn=1π∫π−π(x+π)sin(nx)dx=−2n(−1)n⇒f(x)=a0+∞∑n=1bnsin(nx)⇒f(x)=π−∞∑n=12n(−1)nsin(nx)
解答:
f(x)=x2⇒f(−x)=f(x)⇒f is even ⇒bn=0,n∈Na0=12∫1−1x2dx=12[13x3]|1−1=13an=∫1−1x2cos(nπx)dx=4n2π2(−1)n⇒f(x)=a0+∞∑n=1ancos(nπx)⇒f(x)=13+4π2∞∑n=11n2(−1)ncos(nπx)
解答:
u(x,t)=X(x)T(t)⇒∂u∂t=c2∂2u∂x2⇒XT′=c2X″T⇒X″X=T′c2T=k⇒{X″−kX=0T′−kc2T=0, then B.C: {u(0,t)=0u(L,t)=0⇒{X(0)T(t)=0X(L)T(t)=0⇒{X(0)=0X(L)=0Case 1: k=μ2>0(μ>0)⇒X″−μ2X=0⇒X=c1eμx+c2e−μxB.C: {X(0)=c1+c2=0X(L)=c1eμL+c2e−μL=0⇒c1(e2μL−1)=0⇒c1=0⇒c2=0⇒X=0Case 2: k=0⇒X″=0⇒X=ax+b⇒ B.C: {X(0)=b=0X(L)=aL+b=0⇒X=0Case 3: k=−μ2<0(μ>0)⇒X2+μ2X=0⇒X=c1cos(μx)+c2sin(μx)⇒B.C: {X(0)=c1=0X(L)=c2sin(μL)=0⇒sin(μL)=0⇒μL=nπ⇒μ=μn=nπL⇒Xn=sin(nπxL)⇒T′=c2kT=−c2μ2T⇒Tn=e−c2μ2t=e−c2n2π2/L2⇒un(x,t)=Xn(x)Tn(t)=sin(nπxL)e−c2n2π2t/L,n∈N⇒u(x,t)=a0+∞∑n=1ansin(nπxL)e−c2n2π2t/L⇒I.C: u(x,0)=f(x)=a0+∞∑n=1ansin(nπxL)⇒u(x,t)=a0+∞∑n=1ansin(nπxL)e−c2n2π2t/L, where {a0=1L∫L0f(x)dxan=2L∫L0f(x)sin(nπx)dx
==================== END ======================
沒有留言:
張貼留言