Loading [MathJax]/jax/output/CommonHTML/jax.js

2022年7月18日 星期一

111年屏東高中教甄-數學詳解

國立屏東高級中學111學年度正式教師甄選

一、填充題(共10題,每題6分,共60分)

解答{f(1012)=f(235+111×7)f(235)+111×7=f(235)+777f(1012)=f(235+259×3)f(235)+259×3=f(235)+777f(235)+777f(1012)f(235)+777f(1012)=f(235)+777=220+777=997
解答a,bx2+3x+9=0{a=(3+33i)/2b=(333i)/2ab=3+33i333i=13i2=e4πi/3ab+(ab)2++(ab)2022=ab(1(ab)2022)1ab=e4πi/3(1ei2696π)1e4πi/3=0
解答
解答Γ:9x2+(ya)2=9x2+(ya)29=1PΓP(cosθ,3sinθ+a)y=2x23sinθ+a=2cos2θ=22sin2θ2sin2θ+3sinθ+a2=0sinθ=3±258a413±258a411±258a70258a493a258
解答

{A(0,3)B(4,3)C(210,0)D(0,0){AB=(4,0)DC=(210,0)AD=(0,3)BC=(42103){AB+DC=(4210,0)AD+BC=(4210,6)(AB+DC)(AD+BC)=(210)242=4016=24
解答X=11:{110:411P(X=11)=C104(12)11X=12:{111:412P(X=12)=C114(12)12n=11P(X=n)=110n=5P(X=n)=11261024705123525615128564132=1319512=193512
解答L1A(0,3)L1:y=mx+3{B=L1(L2:5x=12y)B=(36512m,15512m)C=L1(y=0)C=(3/m,0)OBC=¯OB+¯OC+¯BC=39512m+3m15m(512m)m2+1=3024m25m1=m2+116m456m3+36m2+10m=02m(12m5)(24m21)=0m=6/12(m<0)C(66,0)OAC=12¯OA¯OC=12366=96
解答[23x74]=13x+53Z313x+5313x+2x=3k+113,kZ[233k+11374]=133k+113+53[69k6852]=k+2k+269k6852<k+352k+172<69k52k+224172<17k224k=11,12,13x=3413,3713,4013
解答0i,j111C111iC111j=12((C1110+C1111++C111111)2((C1111)2+(C1112)2++(C111111)2))=12((2111)2C222111)=222112C222111C222111=2222211121111101{22229=711129=3{32973=429C22211129222129217=13107221mod2922212113=(213)42110421=21000011mod29

解答:1(23)41(23)7=17552059:{(A)1p=3/5(B)1q=2/5=1pAB{A(a):AaB(b):Bb;AA;{A(4)B(3){A(4+3)=A(7)AA(0)AA(7);A(4)A(0):P(A4A0)=(2/3)4(A(7));P(A4A7)=Q,P(A4A0)=QP(A7A0)+(1Q)(2/3)4=Q(2/3)7+1QQ=1(23)41(23)7

二、計算證明題(共5題,每題8分,共40分)

解答a1=a2==a109=1,a110=111a1,a2,,a110,22110×22=2420220×22=48408014840+80=4920
解答105=3×5×71105105105(1053+1055+10571053×51055×71057×3+1053×5×7)=10557=48;48ai,i=148a1=1,a2=2,a3=4,a4=8,,a48=104,a49=105+a1,a50=105+a2,,a96=105+a48,1204=48×25+4a1204=105×25+a4=2625+8=2633
解答{u=(πx)mdv=xndx{du=m(πx)m1dxv=1n+1xn+1π0(πx)mxndx=[1n+1(πx)mxn+1]|π0+mn+1π0(πx)m1xn+1dx=0+mn+1π0(πx)m1xn+1dx=mn+1π0(πx)m1xn+1dx,{u=(πx)m1dv=xn+1dx{du=(m1)(πx)m2dxv=1n+2xn+2mn+1π0(πx)m1xn+1dx=[m(n+1)(n+2)(πx)m1xn+2]|π0+m(m1)(n+1)(n+2)π0(πx)m2xn+2dx=m(m1)(n+1)(n+2)π0(πx)m2xn+2dx==m!(n+1)(n+2)(n+m)π0(πx)0xm+ndx=m!(m+n)!/n![1m+n+1xm+n+1]|π0=m!n!(m+n)!(m+n+1)πm+n+1=Γ(m+1)Γ(n+1)Γ(m+n+2)πm+n+1,Γ(k+1)=k!
解答


E1E2E3E1E2L();E4LE3E4E1E2E4:α(a1x+b1y+c1zd1)+β(a2x+b2y+c2zd2)=0,E3E4a3αa1+βa2=b3αb1+βb2=c3αc1+βc2d3αd1+βd2{a3αa1+βa2=b3αb1+βb2=c3αc1+βc2=td3αd1+βd2=s,stx=|d1b1c1d2b2c2d3b3c3|=|d1b1c1d2b2c2s(αd1+βd2)t(αb1+βb2)t(αc1+βc2)|=|d1b1c1d2b2c2(ts)(αd1+βd2)00|=(b1c2b2c1)(ts)(αd1+βd2){y=(a2c1a1c2)(ts)(αd1+βd2)z=(a1b2a2b1)(ts)(αd1+βd2);x=y=z=0a1a2=b1b2=c1c2E1E2(E1E2)x,y,z0
解答anx0x1,x1x2,,xn1xnΠnk=1ak=1依 Chebyshev's sum inequalityan1n,an滿:1nnk=1(an1kak)(1nnk=1an1k)(1nnk=1ak)(1):1nnk=1an1k(Πnk=1an1n)1/n=1;(1)1nnk=1ank1nnk=1ak(x0x1)n+(x1x2)n,,(xn1xn)n(x0x1)+(x1x2)++(xn1xn)
======================== END ==============================
計算證明題僅公告第3題,解題僅供參考,其他教甄試題及詳解


沒有留言:

張貼留言