基北區國立臺灣海洋大學附屬基隆海事高級中等學校
111 學年度高級中等學校特色招生
解答:$$假設\cases{1斤芭樂 x元\\ 1斤芒果y元} \Rightarrow \cases{3x+4y= 325 \\ 2x+y = 125} \Rightarrow \cases{x=35\\ y=55} \Rightarrow x+2y = 35+110= 145,故選\bbox[red,2pt]{(C)}$$
解答:$${78\times 8-91-57-61\over 8-3}={415 \over 5}=83,故選\bbox[red,2pt]{(C)}$$
解答:$$圖形通過第一、二、三象限\Rightarrow \cases{斜率為正值\Rightarrow a\gt 0\\ y截距為正值\Rightarrow b\gt 0} \Rightarrow \cases{ab\gt 0\\ a-b\lt 0(因為a\lt b)}\\ \Rightarrow P在第四象限,故選\bbox[red,2pt]{(D)}$$
解答:$$97^2 + 99^2 + 102^2 +104^2 = (100-3)^2 +(100-1)^2 +(100+2)^2 +(100+4)^2\\ =4\cdot 100^2 + (8+4-6-2)\cdot 100+ 1^2+2^2+3^2+4^2 \\ = 40000+400+30 \Rightarrow 百位數字為4,故選\bbox[red,2pt]{(B)}$$
解答:$$F=ax+b \Rightarrow 3x^3+ 5x^2-x-4=(ax+b)(x^2+x-1)-2 \Rightarrow \cases{a=3\\ -b-2=-4 \Rightarrow b=2}\\ \Rightarrow F=3x+2,故選\bbox[red,2pt]{(A)}$$
解答:$$A4=A3的一半 =A2的{1\over 4} = A1的{1\over 8} = A0的{1\over 16} = 1\cdot {1\over 16}={1\over 16},故選\bbox[red,2pt]{(B)}$$
解答:
$$假設\overline{CD}\bot \overline{AB}(見上圖)及\overline{BD}=a,則\overline{AD}=100-a\\ \angle B=45^\circ \Rightarrow \overline{CD}= \overline{BD}=a;\\又\angle A=60^\circ \Rightarrow \overline{CD}=\sqrt 3\times \overline{AD} \Rightarrow \sqrt 3(100-a)= a \Rightarrow a={100\sqrt 3\over \sqrt 3+1} =150-50\sqrt 3\\ 因此\cases{\overline{AC}= {2\over \sqrt 3}\overline{CD}={2\over \sqrt 3}a \\\overline{BC}= \sqrt 2\cdot \overline{BD}=\sqrt 2 a} \Rightarrow \overline{BC} \gt \overline{AC} \Rightarrow 小白距涼亭較遠,故選\bbox[red,2pt]{(C)}$$
$$\cases{\angle B=58^\circ \Rightarrow \stackrel{\large\frown}{AC} =58\times 2=116^\circ \\\angle EAD=90^\circ \Rightarrow \stackrel{\Large\frown}{ACE}=180^\circ} \Rightarrow \stackrel{\large\frown}{CE}=180-116=64^\circ \Rightarrow \stackrel{\large\frown}{BC} =2\stackrel{\large\frown}{CE} =128^\circ,故選\bbox[red,2pt]{(D)}$$
$$令2s=\triangle ADE周長= 5+5+6=16 \Rightarrow s=8 \Rightarrow \triangle ADE面積=\sqrt{s(s-5)(s-5)(s-6)} \\ =\sqrt{8\cdot 3\cdot 3\cdot 2} =12 = {1\over 2}\cdot \overline{AD}\cdot r+ {1\over 2}\cdot \overline{AE}\cdot r ={1\over 2}(6+5)r \Rightarrow r={24\over 11},故選\bbox[red,2pt]{(A)}$$
解答:$$三角形邊長\overline{AB} =\overline{AD} +\overline{DF} +\overline{FB} = 10+ 14+8 =32\\\cases{\angle A=\angle B\\ \angle AFD=\angle BFG} \Rightarrow \triangle AFD\sim \triangle BFG \Rightarrow {\overline{AF}\over \overline{BF}} ={\overline{DF}\over \overline{FG}} \Rightarrow{16\over 8} ={14\over \overline{FG}} \Rightarrow \overline{FG}=7\\ \Rightarrow \overline{CG} =32- 16-7=9,故選\bbox[red,2pt]{(C)}$$
解答:
解答:
$$\overline{CD}=a \Rightarrow \overline{AD}=6-a \Rightarrow \overline{BD}=6-a \Rightarrow \overline{BC}=6-a-a=6-2a=2 \Rightarrow a=2 \\\Rightarrow \overline{OC}= \sqrt{3^2+a^2} =\sqrt{13},故選\bbox[red,2pt]{(D)}$$
解答:$$15= (8+9+ 2a+3b+2c+19+20)\div 11 \Rightarrow 2a+3b+2c=109 \cdots(1)\\ 共有11筆資料,中位數為第6筆資料,即b=15\cdots(2)\\ \cases{Q_1= 第\lceil {11 \over 4} \rceil =3筆資料,即Q_1=a \\Q_3 = 第\lceil {3\times 11 \over 4} \rceil =9筆資料,即Q_3=c} \Rightarrow 四分位距=Q_3-Q_1 = c-a=4\cdots(3) \\ 將(2)代入(1) \Rightarrow 2a+2c=64 \Rightarrow a+c=32 \cdots(4)\\ 由(3)及(4)可得\cases{a=14\\ c=18} \Rightarrow a+b+c =14+15+18 = 47,故選\bbox[red,2pt]{(A)}$$
解答:$$圖形經過(-3,7)、(b,0)、(c,0)三點,因此7為最大值,故選\bbox[red,2pt]{(C)}$$
解答:$$\cases{\overline{DE} \parallel \overline{AF} \Rightarrow \overline{BE}: \overline{EF}= \overline{BD}:\overline{DA} = 3:4 \\ \overline{FG} \parallel \overline{AE} \Rightarrow \overline{CF}: \overline{EF}= \overline{CG}:\overline{GA} = 2:5} \Rightarrow \overline{BE}: \overline{EF} :\overline{FC} =15:20:8 \\ \Rightarrow \triangle ABE:\triangle ACF = \overline{BE} : \overline{CF}=15:8,故選\bbox[red,2pt]{(A)}$$
解答:$${10\over 100-2}={5\over 49},故選\bbox[red,2pt]{(D)}$$
解答:$$假設另一瓶飲料a元 \Rightarrow 小宸需付0.8(a+30)= 0.8a+24;\\ \cases{若a\gt 30 \Rightarrow 小鴻需付a+30\cdot 0.6=a+18 = 0.8a+26 \Rightarrow a=40\\ 若a\lt 30 \Rightarrow 小鴻需付30+0.6a =0.8a+26 \Rightarrow a=20},故選\bbox[red,2pt]{(B)}$$
解答:$${1\over n} +{3\over n} +{5\over n} +\cdots +{27\over n} ={1\over n}\sum_{k=1}^{14} (2k-1) ={2\over n}\cdot {14\cdot 15\over 2} -{14 \over n} ={196\over n}\\ 而196= 2^2\cdot 7^2 \Rightarrow 196的正因數有(2+1)(2+1)=9 個,負因數也有9個\\ 因此n的可能值=9+9=18,故選\bbox[red,2pt]{(C)}$$
解答:$$假設\overline{AB}=s,兩人在C相遇,則\cases{\overline{AC}=a \\\overline{BC}=s-a}\Rightarrow 甲乙速度比=a:s-a;\\當甲回到A時,甲走了2a、乙走了s/2 \Rightarrow {2a\over a}={s/2\over s-a} \Rightarrow a={3\over 4}s\\ \Rightarrow 甲乙速度比=a:s-a ={3\over 4}s:{1\over 4}s=3:1;,故選\bbox[red,2pt]{(B)}$$
解答:
解答:$$15= (8+9+ 2a+3b+2c+19+20)\div 11 \Rightarrow 2a+3b+2c=109 \cdots(1)\\ 共有11筆資料,中位數為第6筆資料,即b=15\cdots(2)\\ \cases{Q_1= 第\lceil {11 \over 4} \rceil =3筆資料,即Q_1=a \\Q_3 = 第\lceil {3\times 11 \over 4} \rceil =9筆資料,即Q_3=c} \Rightarrow 四分位距=Q_3-Q_1 = c-a=4\cdots(3) \\ 將(2)代入(1) \Rightarrow 2a+2c=64 \Rightarrow a+c=32 \cdots(4)\\ 由(3)及(4)可得\cases{a=14\\ c=18} \Rightarrow a+b+c =14+15+18 = 47,故選\bbox[red,2pt]{(A)}$$
解答:$$圖形經過(-3,7)、(b,0)、(c,0)三點,因此7為最大值,故選\bbox[red,2pt]{(C)}$$
解答:$$\cases{\overline{DE} \parallel \overline{AF} \Rightarrow \overline{BE}: \overline{EF}= \overline{BD}:\overline{DA} = 3:4 \\ \overline{FG} \parallel \overline{AE} \Rightarrow \overline{CF}: \overline{EF}= \overline{CG}:\overline{GA} = 2:5} \Rightarrow \overline{BE}: \overline{EF} :\overline{FC} =15:20:8 \\ \Rightarrow \triangle ABE:\triangle ACF = \overline{BE} : \overline{CF}=15:8,故選\bbox[red,2pt]{(A)}$$
解答:$${10\over 100-2}={5\over 49},故選\bbox[red,2pt]{(D)}$$
解答:$$假設另一瓶飲料a元 \Rightarrow 小宸需付0.8(a+30)= 0.8a+24;\\ \cases{若a\gt 30 \Rightarrow 小鴻需付a+30\cdot 0.6=a+18 = 0.8a+26 \Rightarrow a=40\\ 若a\lt 30 \Rightarrow 小鴻需付30+0.6a =0.8a+26 \Rightarrow a=20},故選\bbox[red,2pt]{(B)}$$
解答:$${1\over n} +{3\over n} +{5\over n} +\cdots +{27\over n} ={1\over n}\sum_{k=1}^{14} (2k-1) ={2\over n}\cdot {14\cdot 15\over 2} -{14 \over n} ={196\over n}\\ 而196= 2^2\cdot 7^2 \Rightarrow 196的正因數有(2+1)(2+1)=9 個,負因數也有9個\\ 因此n的可能值=9+9=18,故選\bbox[red,2pt]{(C)}$$
解答:$$假設\overline{AB}=s,兩人在C相遇,則\cases{\overline{AC}=a \\\overline{BC}=s-a}\Rightarrow 甲乙速度比=a:s-a;\\當甲回到A時,甲走了2a、乙走了s/2 \Rightarrow {2a\over a}={s/2\over s-a} \Rightarrow a={3\over 4}s\\ \Rightarrow 甲乙速度比=a:s-a ={3\over 4}s:{1\over 4}s=3:1;,故選\bbox[red,2pt]{(B)}$$
解答:
$$假設\angle ABC=a \Rightarrow \angle ACB=180^\circ-68^\circ-a=112^\circ-a \\\Rightarrow \cases{\angle DBC= \angle EBC/2= (68^\circ+ 112^\circ-a)/2 = 90^\circ-{a\over 2}\\ \angle DCB= \angle BCF/2 = (68^\circ+a)/2= 34^\circ+{a\over 2}} \\ \Rightarrow \angle BDC = 180^\circ -(90^\circ-{a\over 2})-(34^\circ+{a\over 2})=56^\circ,故選\bbox[red,2pt]{(D)}$$
解答:$$\triangle PAD+\triangle PBC = \triangle PAB+ \triangle PCD \Rightarrow 11+\triangle PBC = 8+15 \Rightarrow \triangle PBC = 12,故選\bbox[red,2pt]{(B)}$$
解答:$$假設有a份餐點升級成套餐 \Rightarrow 120\times 12+ 90a \ge 2000 \Rightarrow a\ge 6.2 \Rightarrow a=7,故選\bbox[red,2pt]{(B)}$$
解答:$$\cases{P在y=x+2上\Rightarrow P(a,a+2)\\ Q在y=x-1上 \Rightarrow Q(b,b-1)},又Q的x坐標比P的y坐標多4 \Rightarrow b=a+2+4=a+6 \\ \Rightarrow Q(a+6,a+5) \Rightarrow \overline{PQ}= \sqrt{6^2+3^2} =\sqrt{45}= 3\sqrt 5,故選\bbox[red,2pt]{(A)}$$
解答:$$只有(B)與(D)可能符合|b|=|a-c|,其他都是|b|\gt |a-c|;但(B)不符合\overline{BC}: \overline{AC}= 5:3\\,故選\bbox[red,2pt]{(D)}$$
解答:$$由題意可知\cases{a=2^3\cdot 3\cdot s \\b=2^3\cdot 3\cdot t \\c=5\cdot 7\cdot m\\ d= 5\cdot 7\cdot n},其中\cases{s\lt t\\ m\lt n};且t與5,7,m,n皆互質;\\ 因此abcd= 2^8\cdot 3^3\cdot 5^2\cdot 7^3 \cdot 11 =2^6\cdot 3^2\cdot 5^2 \cdot 7^2\cdot s\cdot t \cdot m\cdot n \Rightarrow s\cdot t \cdot m\cdot n =2^2\cdot 3\cdot 7\cdot 11\\ 因此可取\cases{s=3\\ t=2^2\\ m=7\\ n=11},即\cases{a=2^3\cdot 3^2\\ b=2^5\cdot 3\\ c= 5\cdot 7^2 \\ d= 5\cdot 7\cdot 11},故選\bbox[red,2pt]{(A)}$$
============================= END ===========================
解答:$$假設有a份餐點升級成套餐 \Rightarrow 120\times 12+ 90a \ge 2000 \Rightarrow a\ge 6.2 \Rightarrow a=7,故選\bbox[red,2pt]{(B)}$$
解答:$$\cases{P在y=x+2上\Rightarrow P(a,a+2)\\ Q在y=x-1上 \Rightarrow Q(b,b-1)},又Q的x坐標比P的y坐標多4 \Rightarrow b=a+2+4=a+6 \\ \Rightarrow Q(a+6,a+5) \Rightarrow \overline{PQ}= \sqrt{6^2+3^2} =\sqrt{45}= 3\sqrt 5,故選\bbox[red,2pt]{(A)}$$
解答:$$只有(B)與(D)可能符合|b|=|a-c|,其他都是|b|\gt |a-c|;但(B)不符合\overline{BC}: \overline{AC}= 5:3\\,故選\bbox[red,2pt]{(D)}$$
解答:$$由題意可知\cases{a=2^3\cdot 3\cdot s \\b=2^3\cdot 3\cdot t \\c=5\cdot 7\cdot m\\ d= 5\cdot 7\cdot n},其中\cases{s\lt t\\ m\lt n};且t與5,7,m,n皆互質;\\ 因此abcd= 2^8\cdot 3^3\cdot 5^2\cdot 7^3 \cdot 11 =2^6\cdot 3^2\cdot 5^2 \cdot 7^2\cdot s\cdot t \cdot m\cdot n \Rightarrow s\cdot t \cdot m\cdot n =2^2\cdot 3\cdot 7\cdot 11\\ 因此可取\cases{s=3\\ t=2^2\\ m=7\\ n=11},即\cases{a=2^3\cdot 3^2\\ b=2^5\cdot 3\\ c= 5\cdot 7^2 \\ d= 5\cdot 7\cdot 11},故選\bbox[red,2pt]{(A)}$$
============================= END ===========================
解題僅供參考,其他歷屆特招試題及詳解
沒有留言:
張貼留言