Loading [MathJax]/jax/output/CommonHTML/jax.js

2022年7月1日 星期五

74年大學聯考-自然組數學詳解

 74年升大學聯考數學科(自然組)試題


解答{O(0,0,0)P(1,0,2)Q(1,1,0){OP=(1,0,2)OQ=(1,1,0)n=OP×OQ=(2,2,1)π:2x+2y+z=0A(4,3,4)nL:x42=y32=z41B(2t+4,2t+3,t+4)¯AB=d(A,π)4t2+4t2+t2=|8+6+422+22+12|=6t=2(2)B(0,1,2)=(x,y,z){x=01(C)y=12(B)z=23(E)


解答{zω=2+11iz2+ω2=4+28i{(z+ω)2=4+28i+2(2+11i)=50i=50(cosπ2+isinπ2)(zω)2=4+28i2(2+11i)=8+6i=10(cosθ+isinθ){z+ω=±52(cosπ4+isinπ4)=±(5+5i)zω=±10(cosθ2+isinθ2)=±(3+i){cosθ=4/5sinθ=3/5{cosθ/2=3/10sinθ/2=1/10(z,ω)=(4+3i,1+2i),(12i,4,3i),(1+2i,4+3i),(43i,12i)4(D)
解答4.:z=4+3i1+2i12i43i(AE)

第二部分:非選擇題

    在本部分中第一題為填充題,第二題至第五題為計算與證明題,請都在「非選擇題試卷」上作答。
一、填充題:
    本題共有八個空格,每個空格5分,共40分,請答在「非選擇題試卷」上的第一欄,務必寫上格號(子,丑,‧‧‧,未)後,再寫答案。(為節省「非選擇題試卷」空間,本題作答,請不要寫出演算過程。)

解答x2+2x2+4x+1+x2+4x+1x2+2=522((x2+2)2+(x2+4x+1)2)=5((x2+2)(x2+4x+1))x4+4x329x2+24x=0(x+8)x(x1)(x3)=0x=8,0,1,338
解答cos4θ=2cos22θ1=2(2cos2θ1)21=8cos4θ8cos2θ+1=8(1sin2θ)28(1sin2θ)+1=8sin4θ8sin2θ+1=sinθ8x48x2x+1=08x2(x+1)(x1)(x1)=0(x1)(8x3+8x21)=0(x1)(2x+1)(4x2+2x1)=0x=1,12,1±54=154
解答{x=cos3θy=sin3θ+sinθx2+y2=cos6θ+sin6θ+2sin4θ+sin2θ=(cos2θ+sin2θ)(cos4θcos2θsin2θ+sin4θ)+2sin4θ+sin2θ=cos4θcos2θsin2θ+3sin4θ+sin2θ=(1sin2θ)2(1sin2θ)sin2θ+3sin4θ+sin2θ=5sin4θ2sin2θ+1f(θ)=5sin4θ2sin2θ+1f(θ)=20sin3θcosθ4sinθcosθ=4sinθcosθ(5sin2θ1)=2sin2θ(5sin2θ1)f(θ)=0{sin2θ=0sinθ=1(θ=π/2)f(θ)=4sin2θ=1/5f(θ)=4/5{x2+y2=45=255x2+y2=4=2
解答1999998779999X09XX099=81X0X99=81X009XXX093=729XX0X729X0XX729XX0099=81X0X081X00X81X000993+815+7293=26199880,9890,9900,99[19]0,990[19]1+1+1+9+9=21261921=25980;020:X00XX00X0X0X00XX0009+813+92=270199992619+270=288909880,9890,9900,99[19]0,990[19]1+1+2+9+9=22288922=2867

解答
(1)u2+1u2=(u+1u)22=x22u3+1u3=(u+1u)(u2u1u+1u2)=x(x221)=x33x(2)x33x+1=u3+1u3+1=0u6+u3+1=0(u31)(u6+u3+1)=0u9=1u=cos2kπ9+isin2kπ9,k=08u3=1u=cos2kπ9+isin2kπ9=ck,k=1,2,4,5,7,8x=c+c1,c2+c2,c4+c4,c5+c5,c7+c7,c8+c8c+c1=c8+c8c2+c2=c7+c7c4+c4=c5+c5x=c+c1,c2+c2,c4+c4
解答Ψ:y2=4cx{P1(cp21,2cp1)P2(cp22,2cp2)P3(cp23,2cp3)p1,p2,p3R;y2=4cx2yy=4cy=2cy{L1=1/p1L2=1/p2L3=1/p3{L1:y=(xcp21)/p1+2cp1L2:y=(xcp22)/p2+2cp2L3:y=(xcp23)/p3+2cp3{L1:p1y=x+cp21L2:p2y=x+cp22L3:p3y=x+cp23{Q1=L2L3=(cp2p3,c(p2+p3))Q2=L1L3=(cp1p3,c(p1+p3))Q3=L1L2=(cp1p2,c(p1+p2))P1P3P3=12cp212cp11cp222cp21cp232cp31=c2p21p11p22p21p23p31=c2p21p11p22p21p2p10p23p21p3p10=c2|(p22p21)(p3p1)(p23p21)(p2p1)|=c2|(p1p2)(p2p3)(p3p1)|Q1Q2Q3=12cp2p3c(p2+p3)1cp1p3c(p1+p3)1cp1p2c(p1+p2)1=c22p2p3(p2+p3)1p1p3(p1+p3)1p1p2(p1+p2)1=c22p2p3(p2+p3)1p3(p1p2)(p1p2)0p2(p1p3)(p1p3)0=c22|p3(p1p2)(p1p3)p2(p1p2)(p1p3)|=c22|(p1p2)(p2p3)(p3p1)|P1P2P3Q1Q2Q3=c2c2/2=2P1P2P3:Q1Q2Q3=2:1


解答x2x+1>0,xR(a+1)x2+(a2)x+(a+1)x2x+1>b(ab+1)x2+(a+b2)x+(ab+1)>0{ab+1>0(a+b2)24(ab+1)2<0{ab+1>0(3ab)(a3b+4)>0ab

解答3x24xy+6y22x8y9=0{6x4y2=04x+12y8=0(x,y)=(1,1)(1,1)(0,0){x=x1y=y1{x=x+1y=y+13(x+1)24(x+1)(y+1)+6(y+1)22(x+1)8(y+1)9=03x24xy+6y2=14θ使xtan2θ=236=23{sinθ=1/5cosθ=2/5:ax2+by2=14{a+c=3+6=9ac=(36)2+(4)2=5{a=2c=72x2+7y2=14x27+y22=1{=7=2(1,1)tanθ=1/2y=12(x1)+1x2y+1=0;(1,1)=2y=2(x1)+12x+y=3




沒有留言:

張貼留言