111年公務人員高等考試三級考試試題
類 科: 天文、 氣象
科 目: 應用數學( 包括微積分、 微分方程與向量分析)
解答:{2x+y+dz=cx+z=bx+y+2z=a⇒△=|21d101112|,△x=|c1db01a12|,△y=|2cd1b11a2|,△z=|21c10b11a|(一)有唯一解:△≠0⇒d−3≠0⇒d≠3(二)無窮多解:△=0⇒d=3⇒{△x=a+b−c△y=a+b−c△z=−a−b+c,因此若△x=△y=△z=0⇒a+b=c無窮多解的條件:{a+b=cd=3(三)無解:由(一)、(二)可知無解的條件:{a+b≠cd=3

解答:
令{→F=(F1,F2,F3)→G=(G1,G2,G3)及{D1=∂∂xD2=∂∂yD3=∂∂z⇒∇(→F⋅→G)=∇(3∑i=1FiGi)∇(→F⋅→G) = ∇(F1G1+F2G2+F3G3)=(D1(F1G1+F2G2+F3G3), D2(F1G1+F2G2+F3G3), D3(F1G1+F2G2+F3G3))=(D1F1G1+F1D1G1 +D1F2G2+F2D1G2+D1F3G3+F3D1G3 ,D2F1G1+F2D2G1+D2F2G2+F2D2G2+D2F3G3+F3D2G3,D3F1G1+F1D3G1+D3F2G2+F2D3G2+D3F3G3+F3D3G3)=((F1D1G1+F2D1G2+F3D1G3)+(G1D1F1+G2D1F2+G3D1F3),(F1D2G1+F2D2G2+F3D2G3)+(G1D2F1+G2D2F2+G3D2F3),(F1D3G1+F2D3G2+F3D3G3)+(G1D3F1+G2D3F2+G3D3F3))=((F1D1G1+F2D2G1+F3D3G1)+(F2D1G2−F2D2G1) +(F3D1G3−F3D3G1)+(G1D1F1+G2D2F1+G3D3F1) +(G2D1F2−G2D2F1) +(G3D1F3−G3D3F1),(F1D1G2+F2D2G2+F3D3G2)+(F3D2G3−F3D3G2)+(F1D2G1−F1D1G2)+(G1D1F2+G2D2F2+G3D3F2)+(G3D2F3−G3D3F2)+(G1D2F1−G1D1F2),(F1D1G3+F2D2G3+F3D3G3)+(F1D3G1−F1D1G3)+(F2D3G2−F2D2G3)+(G1D1F3+G2D2F3+G3D3F3)+(G1D3F1−G1D1F3)+(G2D3F2−G2D2F3))=(→F⋅∇)G1+F2(D1G2−D2G1)+F3(D1G3−D3G1)+(→G⋅∇)F1+G2(D1F2−D2F1)+G3(D1F3−D3F1),(→F⋅∇)G2+F3(D2G3−D3G2)+F1(D2G1−D1G2)+(→G⋅∇)F2+G3(D2F3−D3F2)+G1(D2F1−D1F2),(→F⋅∇)G3+F1(D3G1−D1G3)+F2(D3G2−D2G3)+(→G⋅∇)F3+G1(D3F1−D1F3)+G2(D3F2−D2F3))=(→F⋅∇)→G+→F×(∇×→G)+(→G⋅∇)→F+→G×(∇×→F)⇒∇(→F⋅→G)=(→F⋅∇)→G+→F×(∇×→G)+(→G⋅∇)→F+→G×(∇×→F)⇒∇(→F⋅→G)−→F×(∇×→G)−→G×(∇×→G)=(→F⋅∇)→G+(→G⋅∇)→F
令{→F=(F1,F2,F3)→G=(G1,G2,G3)及{D1=∂∂xD2=∂∂yD3=∂∂z⇒∇(→F⋅→G)=∇(3∑i=1FiGi)∇(→F⋅→G) = ∇(F1G1+F2G2+F3G3)=(D1(F1G1+F2G2+F3G3), D2(F1G1+F2G2+F3G3), D3(F1G1+F2G2+F3G3))=(D1F1G1+F1D1G1 +D1F2G2+F2D1G2+D1F3G3+F3D1G3 ,D2F1G1+F2D2G1+D2F2G2+F2D2G2+D2F3G3+F3D2G3,D3F1G1+F1D3G1+D3F2G2+F2D3G2+D3F3G3+F3D3G3)=((F1D1G1+F2D1G2+F3D1G3)+(G1D1F1+G2D1F2+G3D1F3),(F1D2G1+F2D2G2+F3D2G3)+(G1D2F1+G2D2F2+G3D2F3),(F1D3G1+F2D3G2+F3D3G3)+(G1D3F1+G2D3F2+G3D3F3))=((F1D1G1+F2D2G1+F3D3G1)+(F2D1G2−F2D2G1) +(F3D1G3−F3D3G1)+(G1D1F1+G2D2F1+G3D3F1) +(G2D1F2−G2D2F1) +(G3D1F3−G3D3F1),(F1D1G2+F2D2G2+F3D3G2)+(F3D2G3−F3D3G2)+(F1D2G1−F1D1G2)+(G1D1F2+G2D2F2+G3D3F2)+(G3D2F3−G3D3F2)+(G1D2F1−G1D1F2),(F1D1G3+F2D2G3+F3D3G3)+(F1D3G1−F1D1G3)+(F2D3G2−F2D2G3)+(G1D1F3+G2D2F3+G3D3F3)+(G1D3F1−G1D1F3)+(G2D3F2−G2D2F3))=(→F⋅∇)G1+F2(D1G2−D2G1)+F3(D1G3−D3G1)+(→G⋅∇)F1+G2(D1F2−D2F1)+G3(D1F3−D3F1),(→F⋅∇)G2+F3(D2G3−D3G2)+F1(D2G1−D1G2)+(→G⋅∇)F2+G3(D2F3−D3F2)+G1(D2F1−D1F2),(→F⋅∇)G3+F1(D3G1−D1G3)+F2(D3G2−D2G3)+(→G⋅∇)F3+G1(D3F1−D1F3)+G2(D3F2−D2F3))=(→F⋅∇)→G+→F×(∇×→G)+(→G⋅∇)→F+→G×(∇×→F)⇒∇(→F⋅→G)=(→F⋅∇)→G+→F×(∇×→G)+(→G⋅∇)→F+→G×(∇×→F)⇒∇(→F⋅→G)−→F×(∇×→G)−→G×(∇×→G)=(→F⋅∇)→G+(→G⋅∇)→F

解答:先求兩圖形{x2+y2+z=1y+z=1的交集⇒z=1−x2−y2=1−y⇒x2+y2−y=0⇒x2+(y−12)2=14為一圓,其{圓心(0,1/2)半徑=1/2利用圓柱坐標:{x=rcosθy=rsinθ+12z=z⇒{z=1−x2−y2=34−r2−rsinθz=1−y=12−rsinθ⇒欲求之體積=∫2π0∫1/20∫3/4−r2−rsinθ1/2−rsinθrdzdrdθ=∫2π0∫1/2014r−r3drdθ=∫2π0164dθ=π32

解答:△u(r,θ)=1√r2+c2=f(r)⇒∂2∂r2u+1r∂∂ru+1r2∂2∂θ2u=1√r2+c2由於是所有徑向,即與θ無關,因此上式變為∂2∂r2u+1r∂∂ru=1√r2+c2⇒u″+1ru′=1√r2+c2先求齊次解:u″+1ru′=0,令u′=rm⇒u″=mrm−1⇒mrm−1+rm−1=0⇒m=−1⇒u′=C1r−1⇒uh=C1lnx+C2接下來用參數變換法來求up:{u1=lnru2=1⇒W(u1,u2)=|lnr11/x0|=−1r⇒up=−y1∫y2f(r)W(y1,y2)dr+y2∫y1f(r)W(y1,y2)dr=−lnr∫1/√r2+c2−1/rdr+∫lnr/√r2+c2−1/rdr=lnr∫r√r2+c2dr−∫rlnr√r2+c2dr=lnr(√r2+c2)−(lnr√r2+c2−∫√r2+c2rdr)=∫√r2+c2rdr=√r2+c2−ctanh−1√r2+c2c(取r=ctan(v)⇒dr=csec2vdv)⇒u=uh+up⇒u=√x2+c2−ctanh−1(√x2+c2c)+C1lnx+C2
=================== END ========================
考選部未公告答案,解題僅供參考,其他國考試題及詳解
沒有留言:
張貼留言