國立臺北科技大學110學年度碩士班招生考試
系所組別:土木工程系土木與防災碩士班乙組
科目:工程數學
解答:1.y′=3x22y⇒2ydy=3x2dx⇒y2=x3+c1y(1)=3⇒32=1+c1⇒c1=8⇒y=√x3+82.y′=xex⇒y=∫xexdx=xex−ex+c1⇒y=xex−ex+c13.y″+4y′−y=0⇒λ2+4λ−1=0⇒λ=−2±√5⇒yh=c1e(−2+√5)x+c2e−(2+√5)xyp=ax2+bx+c⇒y′p=2ax+b⇒y″p=2a⇒y″p+4y′p−yp=−ax2+(8a−b)x+(2a+4b−c)=2x2−3x+6⇒{−a=28a−b=−32a+4b−c=6⇒{a=−2b=−13c=−62⇒y=−2x2−13x−62⇒y=yh+yp⇒y=c1e(−2+√5)x+c2e−(2+√5)x−2x2−13x−624.y‴+6y″+11y′+6y=0⇒λ3+6λ2+11λ+6=0⇒(λ+1)(λ+2)(λ+3)=0⇒λ=−1,−2,−3⇒y=c1e−x+c2e−2x+c3e−3x解答:A=[510−1010510−10105]⇒det

解答:L\{y''\}+ L\{y'\}=L\{\pi\} \Rightarrow s^2Y(s)-sy(0)-y'(0)+sY(s)-y(0)={\pi \over s} \\ \Rightarrow (s^2+s)Y(s)={\pi\over s}+\pi(s+1) \Rightarrow Y(s)= {\pi \over s^2(s+1)} +{\pi\over s} \\ \Rightarrow y(t)=L^{-1}\{Y(s)\} = L^{-1}\left\{ {\pi \over s^2(s+1)} \right\} + L^{-1}\left\{ {\pi\over s}\right\}\\ = L^{-1}\left\{ -{\pi \over s }+{\pi\over s^2}+{\pi\over s+1} \right\} + L^{-1}\left\{ {\pi\over s}\right\} =-\pi+\pi t+\pi e^{-t}+\pi \Rightarrow \bbox[red, 2pt]{y(t)=\pi(t+e^{-t}) }
==================== END ======================
解題僅供參考,其他歷年試題及詳解
勘誤一下,第三題的,L^-1{Pi/s^2*(s+1)}在最後一行少了那個pi了,所以答案有誤
回覆刪除對! 少了個π,已修訂!!
刪除