Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js

2024年5月5日 星期日

113年雲科大電機碩士班-工程數學詳解

國立雲林科技大學113學年度碩士班招生考試

系所:電機系
科目:工程數學

解答(1)dydx=e2x3ye3ydy=e2xdx13e3y=12e2x+c1e3y=32e2x+c23y=ln(32e2x+c2)y=13ln(32e2x+c2)(2)xdydxy=x2sinx1xdydx1x2y=sinx(yx)=sinxyx=cosx+c1y=xcosx+c1x(3)y3dx+3xy2dy=03xy2dy=y3dx1ydy=13xdxlny=13lnx+c1y=c23x
解答5y
解答\textbf{(1)}\; L\{e^t(\cos \omega t-2\sin \omega t)\} =L\{e^t\cos \omega t\} -2L\{e^t \sin \omega t\} ={s-1\over (s-1)^2+\omega^2}-2\cdot {\omega\over (s-1)^2+\omega^2} \\\quad = \bbox[red,2pt]{s-1-2\omega \over (s-1)^2+\omega^2} \\\textbf{(2)}\; L^{-1}\left\{ {3\over s(s^2+9)}\right\} =L^{-1}\left\{{1\over 3s}- {s\over 3(s^2+9)}\right\} = \bbox[red, 2pt]{{1\over 3}-{1\over 3}\cos(3t)} \\ \textbf{(3)}\; L\left\{ \int_0^t \tau e^{t-\tau} \,d\tau \right\} =L\{t \} L\{e^t\} ={1\over s^2} \cdot {1\over s-1} =\bbox[red, 2pt]{1\over s^2(s-1)}
解答a_0={1\over 2\pi} \int_{-\pi}^\pi (\pi+t)\,dt=\pi \\ a_n={1\over \pi} \int_{-\pi}^\pi (\pi+t) \cos(nt)\,dt = {1\over \pi} \left( \left. \left[ {\pi \over n}\sin(nt) +{t\over n}\sin(nt)+{1\over n^2} \cos(nt)\right] \right|_{-\pi}^\pi\right)=0\\ b_n={1\over \pi} \int_{-\pi}^\pi (\pi+t) \sin(nt)\,dt  =-{2 \over n}(-1)^n \\ \Rightarrow \bbox[red, 2pt]{f(x)=\pi-\sum_{n=1}^\infty {2 \over n}(-1)^n \sin(nx)}
解答\cases{P_0(2,3,-4) \\P_1(3,-2,5)} \Rightarrow \vec v=\overrightarrow{P_0P_1} =(1,-5,9) \Rightarrow L:{x-2\over 1} ={y-3\over -5}={z+4\over 9} \\ \Rightarrow \bbox[red, 2pt]{L=(t+2,-5t+3,9t-4), t\in \mathbb R}
解答\textbf{(1)}\; [v_1 \mid v_2 \mid v_3 \mid w_1\mid w_2\mid w_3] =\begin{bmatrix}2 & 1 & 1 & 6 & 4 & 5\\0 & 2 & 1 & 3 & -1 & 5\\1 & 0 & 1 & 3 & 3 & 2 \end{bmatrix} \xrightarrow{R_1/2\to R_1,R_2/2\to R_2} \begin{bmatrix}1 & \frac{1}{2} & \frac{1}{2} & 3 & 2 & \frac{5}{2}\\0 & 1 & \frac{1}{2} & \frac{3}{2} & - \frac{1}{2} & \frac{5}{2}\\1 & 0 & 1 & 3 & 3 & 2 \end{bmatrix} \\ \xrightarrow{R_3-R_1\to R_3} \begin{bmatrix}1 & \frac{1}{2} & \frac{1}{2} & 3 & 2 & \frac{5}{2}\\0 & 1 & \frac{1}{2} & \frac{3}{2} & - \frac{1}{2} & \frac{5}{2}\\0 & - \frac{1}{2} & \frac{1}{2} & 0 & 1 & - \frac{1}{2} \end{bmatrix} \xrightarrow{R_1-0.5R_2\to R_1,R_3+0.5R_2\to R_3} \begin{bmatrix}1 & 0 & \frac{1}{4} & \frac{9}{4} & \frac{9}{4} & \frac{5}{4}\\0 & 1 & \frac{1}{2} & \frac{3}{2} & - \frac{1}{2} & \frac{5}{2}\\0 & 0 & \frac{3}{4} & \frac{3}{4} & \frac{3}{4} & \frac{3}{4} \end{bmatrix} \\ \xrightarrow{(4/ 3)R_3 \to R_3} \begin{bmatrix}1 & 0 & \frac{1}{4} & \frac{9}{4} & \frac{9}{4} & \frac{5}{4}\\0 & 1 & \frac{1}{2} & \frac{3}{2} & - \frac{1}{2} & \frac{5}{2}\\0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix} \xrightarrow{R_1-(1/4)R_3\to R_1,R_2-(1/2)R_3 \to R_2} \begin{bmatrix}1 & 0 & 0 & 2 & 2 & 1\\0 & 1 & 0 & 1 & -1 & 2\\0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix} \\ \Rightarrow P_{S\leftarrow T} = \bbox[red, 2pt]{\left[\begin{matrix}2 & 2 & 1\\1 & -1 & 2\\1 & 1 & 1\end{matrix}\right]}
解答A=\begin{bmatrix}0 & 2 & 2 \\2 & 0 & 2 \\ 2 & 2 & 0\end{bmatrix} \Rightarrow \det(A-\lambda I)=-(\lambda+2)^2(\lambda-4)=0 \Rightarrow \lambda=-2,4\\ \lambda_1=-2 \Rightarrow (A-\lambda_1 I)v=0 \Rightarrow \begin{bmatrix} 2 & 2 & 2 \\2 & 2 & 2 \\2 & 2 & 2 \end{bmatrix} \begin{bmatrix}x_1\\x_2 \\x_3  \end{bmatrix}=0 \\\qquad \Rightarrow v= x_2 \begin{pmatrix}-1 \\1 \\0 \end{pmatrix} +x_3  \begin{pmatrix}-1 \\0 \\1 \end{pmatrix}, \text{ choose }v_1= \begin{pmatrix}-1 \\1 \\0 \end{pmatrix} ,v_2= \begin{pmatrix}-1 \\0 \\1 \end{pmatrix}\\ \lambda_2=4  \Rightarrow (A-\lambda_2 I)v=0 \Rightarrow \begin{bmatrix} -4 & 2 & 2 \\2 & -4 & 2 \\2 & 2 & -4 \end{bmatrix} \begin{bmatrix}x_1\\x_2 \\x_3  \end{bmatrix}=0 \\ \qquad \Rightarrow v= x_3\begin{pmatrix} 1 \\1 \\ 1 \end{pmatrix} , \text{ choose }v_3= \begin{pmatrix}1 \\1 \\ 1 \end{pmatrix}\\ \text{Now, applying Gram-Schmidt process, }e_1={v_1\over |v_1|} =\begin{pmatrix}-1/\sqrt 2 \\1/\sqrt 2 \\0 \end{pmatrix} \\ u_2=v_2-(v_2\cdot e_1)e_1= \begin{pmatrix} -1/2 \\ -1/2 \\ 1 \end{pmatrix} \Rightarrow e_2= {u_2\over |u_2|} =\begin{pmatrix}-1/\sqrt 6 \\-1/\sqrt 6 \\ 2/\sqrt 6 \end{pmatrix} \\ u_3=v_3-(v_3\cdot e_1)e_1-(v_3\cdot e_2)e_2 =\begin{pmatrix}1 \\1 \\ 1 \end{pmatrix} \Rightarrow e_3={u_3\over |u_3|} =\begin{pmatrix}1/\sqrt 3 \\1/\sqrt 3 \\ 1/\sqrt 3 \end{pmatrix} \\ \Rightarrow P=[ e_1\mid e_2\mid e_3]\Rightarrow \bbox[red, 2pt]{P =\begin{bmatrix}-{\sqrt 2\over 2} & -{\sqrt 6\over 6} & {\sqrt 3\over 3}\\{\sqrt 2\over 2} & -{\sqrt 6\over 6} & {\sqrt 3\over 3} \\0& {\sqrt 6\over 3} & {\sqrt 3\over 3} \end{bmatrix}}
==================== END ======================
解題僅供參考,其他歷年試題及詳解

6 則留言:

  1. 第四題的b_n=-2*(-1)^n/n.沒有pi,麻煩再檢查了.

    回覆刪除
    回覆
    1. 沒有吧,我完整寫出來好了你那b_n積分出來是
      [-(π+t)*cos(nt)/n+(sin(nt))/n^2]*1/π t from -π to π
      重點是你最後會乘那個1/π 所以消掉了

      刪除
  2. 我留一個新留言好了,b_n積分出來是
    [-(π+t)*cos(nt)/n+(sin(nt))/n^2]*1/π ,t from -π to π
    sin(nπ)or sin(-nπ)=0,-(π+(-π))*cos(n(-π))=0,-(π+π)*cos(nπ)=-2π*cos(nπ)=-2π*(-1)^n
    重點是你最後會乘那個"1/π" ,所以π消掉了.

    回覆刪除