2022年8月19日 星期五

97年專科學力鑑定-工程數學詳解

教育部 97 年專科學校畢業程度自學進修學力鑑定考試

科 別:冷凍空調、電機工程、電子工程、電訊工程、資訊工程
科目名稱:專業科目(一)
考 科:工程數學

解答:$$令\cases{M=y^2\\ N=(1+xy)} \Rightarrow \cases{M_y=2y\\ N_x=y} \Rightarrow y^2dx+ (1+xy)dy =0 \equiv Mdx+ Ndy=0 非恰當\\ 取積分因子I(y) \Rightarrow IMdx+ INdy=0 \Rightarrow {\partial \over \partial y}(IM)={\partial \over \partial x}(IN) \Rightarrow I'y^2+Iy=0\\ \Rightarrow I={1\over y} \Rightarrow ydx +({1\over y}+x)dy=0 \Rightarrow -\ln y+xy=C_1 \Rightarrow {C_2\over y}= e^{xy} \Rightarrow ye^{xy}=C_2,故選\bbox[red,2pt]{(A)}$$
解答:$$f(x)=\begin{cases}x, &0\le x\le \ell/2\\ \ell-x, & \ell/2\le x\le \ell \end{cases} \Rightarrow f'(x)=\begin{cases}1, &0\le x\le \ell/2\\ -1, & \ell/2\le x\le \ell \end{cases} \Rightarrow f'(0)=1\\ f(x)=a_0 \sum_{n=1}^\infty (-1)^{n+1}{1\over (2n-1)^2} \sin{(2n-1)\pi x\over \ell} \Rightarrow f'(x)=a_0\sum_{n=1}^\infty (-1)^{n+1}{\pi\over \ell(2n-1)} \cos{(2n-1)\pi x\over \ell}\\ \Rightarrow f'(0)={\pi \over \ell}a_0(1-{1\over 3}+{1\over 5}-\cdots)= {\pi \over \ell}a_0\cdot{\pi\over 4} ={\pi^2\over 4\ell}a_0=1 \Rightarrow a_0 ={4\ell\over \pi^2},故選\bbox[red,2pt]{(D)}$$
解答:$$只有(A)與(B)符合y(0)=2;而只有(A)符合4y''+\pi^2 y=0,故選\bbox[red,2pt]{(A)}$$
解答:$$齊次解已有e^x及xe^x,因此y_p=kx^2e^x, k為常數,故選\bbox[red,2pt]{(C)}$$
解答:$$\mathcal{L}\{\sin 2t\}={2\over s^2+4} \Rightarrow {1\over (s^2+4)^2} ={1\over 4} \mathcal{L}\{\sin 2t\} \mathcal{L}\{\sin 2t\},故選\bbox[red,2pt]{(A)}$$
解答:$$e^{x+1} =e\cdot e^x,故選\bbox[red,2pt]{(B)}$$
解答:$$\vec v_1\bot \vec v_2 \Rightarrow \vec v_1\cdot \vec v_2=0 \Rightarrow b+a+6=0 \Rightarrow a+b=-6,故選\bbox[red,2pt]{(D)}$$
解答:$$xy'+y +4=0 \Rightarrow x \cdot {dy\over dx} =-4-y \Rightarrow {1\over -4-y}dy = {1\over x}\,dx \Rightarrow -\ln (y+4)=\ln x \\ \Rightarrow \ln{1\over y+4} =\ln x \Rightarrow x(y+4)=C, C為常數,故選\bbox[red,2pt]{(A)}$$
解答:$$\vec a+\vec b+\vec c=0 \Rightarrow \vec a+\vec b=-\vec c \Rightarrow |2\vec a+2\vec b+2\vec c|=|-2\vec c+ 2\vec c|=0,故選\bbox[red,2pt]{(A)}$$
解答:$$\sin x的週期為2\pi \Rightarrow \sin (3x)的週期為{2\over 3}\pi,故選\bbox[red,2pt]{(D)}$$
解答:$$只有(D)符合y(0)=1,故選\bbox[red,2pt]{(D)}$$
解答:$$\mathcal{L}\{ {3s+7\over s^2-2s-3}\} =\mathcal{L}\{ {4\over  s-3}-{1\over s+1}\} = 4e^{3t}-e^{-t},故選\bbox[red,2pt]{(B)}$$
解答:$$\overrightarrow{BD} =\overrightarrow{BA} +\overrightarrow{AD} =-\vec a+b,故選\bbox[red,2pt]{(C)}\\公布的答案是\bbox[blue,2pt]{(B)}$$
解答:$$\cases{|\vec a|=1\\ |\vec b|=2 \\ |\vec a+2\vec b|=\sqrt{13}} \Rightarrow |\vec a+2\vec b|^2=13 =(\vec a+2\vec b) \cdot (\vec a+2\vec b)= |\vec a|^2 +4\vec a\cdot \vec b+4|\vec b|^2 =17+ 4\vec a\cdot \vec b\\ \Rightarrow \vec a\cdot \vec b= -1 \Rightarrow \cos \theta ={\vec a\cdot \vec b\over |\vec a||\vec b|} ={-1\over 2} \Rightarrow \theta =120^\circ
,故選\bbox[red,2pt]{(C)}$$
解答:$$\cos x為偶函數\Rightarrow \cos(2x)為偶函數,故選\bbox[red,2pt]{(C)}$$
解答:$$\cases{A為3\times 1矩陣\\ B為1\times 4矩陣} \Rightarrow AB為3\times 4矩陣,故選\bbox[red,2pt]{(B)}$$
解答:$$列運算不改變行列式的值,故選\bbox[red,2pt]{(C)}$$
解答:$$\det(A-\lambda I)=(\lambda-2)(\lambda -1)-6= \lambda^2-3\lambda-4=0之兩根和為3,故選\bbox[red,2pt]{(C)}$$
解答:$$(A-I)x=0 \Rightarrow \begin{bmatrix} 4 & 4\\ 1 & 1\end{bmatrix}\begin{bmatrix}x_1\\ x_2 \end{bmatrix}=0 \Rightarrow x_1=-x_2 \Rightarrow 特徵向量為\begin{bmatrix}k\\ -k \end{bmatrix},k\in \mathbb{R},故選\bbox[red,2pt]{(A)}$$
解答:$$A=\begin{bmatrix} -3 & 2\\ -10 & 6\end{bmatrix} \Rightarrow \det(A)=2 \Rightarrow A^{-1}={1\over \det(A)}\begin{bmatrix} 6 & -2\\ 10 & -3\end{bmatrix} =\begin{bmatrix} 3 & -1\\ 5 & -3/2\end{bmatrix},故選\bbox[red,2pt]{(B)}$$

========================= END =============================

解題僅供參考,其他歷屆試題及詳解

沒有留言:

張貼留言