教育部 98 年專科學校畢業程度自學進修學力鑑定考試
科 別:冷凍空調、電機工程、電子工程、電訊工程、資訊工程
科目名稱:專業科目(一)
考 科:工程數學
解答:$$\mathcal{L}\{\cos at\} =\int_0^\infty \cos (at) e^{-st}\,dt = -{1\over s}\cos(at)e^{-st}-{a\over s}\int_0^\infty \sin(at) e^{-st}\,dt\\ =-{1\over s}\cos(at)e^{-st} +{a\over s^2} \sin(at)e^{-st}-{a^2\over s^2}\int_0^\infty \cos(at)e^{-st}\,dt\\ \Rightarrow (1+{a^2\over s^2})\int_0^\infty \cos (at) e^{-st}\,dt = \left.\left[-{1\over s}\cos(at)e^{-st} +{a\over s^2} \sin(at)e^{-st} \right] \right|_0^\infty ={1\over s} \\ \Rightarrow \int_0^\infty \cos (at) e^{-st}\,dt ={s^2\over s^2+a^2} \cdot {1\over s}= {s\over s^2+a^2},故選\bbox[red, 2pt]{(A)}$$解答:$$令\vec u=\vec B\times \vec C \Rightarrow \vec u\bot \vec B \Rightarrow \vec B\cdot \vec u=0\\ (D)\times: 若\vec A與\vec B同向,即\vec A=k\vec B \Rightarrow \vec A\cdot (\vec B\times \vec C)= k\vec B \cdot \vec u =0,矛盾,故選\bbox[red, 2pt]{(D)}$$
解答:$$\mathcal{L^{-1}}\{{1\over s^3(s^2+1)}\} =\mathcal{L^{-1}}\{{1\over s^3}+ {s\over s^2+1} -{1\over s}\} ={t^2\over 2}+\cos t-1,本題\bbox[red, 2pt]{(無解)}\\ 公布的答案是\bbox[blue,2pt]{(C)}$$
解答:$$yy''、y^3及\sin y皆不是線性ODE項次,故選\bbox[red, 2pt]{(B)}$$
解答:$$向量繞一圈為0,故選\bbox[red, 2pt]{(C)}$$
解答:$$A=\left[\begin{matrix}1 & 2 & -1 & 3\\-3 & 4 & 0 & -1\\1 & 0 & -2 & 7\end{matrix}\right] \Rightarrow rref(A)=\left[\begin{matrix}1 & 0 & 0 & 0\\0 & 1 & 0 & - \frac{1}{4}\\0 & 0 & 1 & - \frac{7}{2}\end{matrix}\right] \Rightarrow rank(A)=3,故選\bbox[red, 2pt]{(C)}\\公布的答案是\bbox[blue,2pt]{(B)}$$
解答:$$\nabla \cdot \vec V= {\partial \over \partial x}(xz) +,{\partial \over \partial y}(-y^2) +{\partial \over \partial z}(2x^2y) =z-2y,故選\bbox[red, 2pt]{(A)}$$
解答:$$10x_1^2+ 6x_1x_2+ 2x_2^2 =1 \Rightarrow \left[\begin{matrix} x_1 & x_2 \end{matrix}\right]\left[\begin{matrix}10 & 3 \\3 & 2\end{matrix}\right] \left[\begin{matrix} x_1\\ x_2 \end{matrix}\right] =1 \\ \Rightarrow \left[\begin{matrix} x_1 & x_2 \end{matrix}\right]\left[\begin{matrix} -1/\sqrt{10} & 3/\sqrt{10} \\3/\sqrt{10} & 1/\sqrt{10} \end{matrix} \right] \left[ \begin{matrix} \color{blue}1 & 0 \\ 0 & \color{blue} {11}\end{matrix}\right] \left[\begin{matrix} -1/\sqrt{10} & 3/\sqrt{10} \\3/\sqrt{10} & 1/\sqrt{10} \end{matrix} \right] \left[\begin{matrix} x_1\\ x_2 \end{matrix} \right] =1 \\ \Rightarrow [(-x_1+3x_2)/\sqrt{10}, (3x_1+x_2)/\sqrt{10}] \left[\begin{matrix} 1 & 0 \\ 0 & 11 \end{matrix} \right] \begin{bmatrix} (-x_1+3x_2)/\sqrt{10}\\ (3x_1+x_2)/\sqrt{10}\end{bmatrix} =1\\ \Rightarrow [y_1\; y_2] \left[\begin{matrix} 1 & 0 \\ 0 & 11\end{matrix}\right] \begin{bmatrix} y_1\\ y_2 \end{bmatrix}=1 \Rightarrow y_1^2+11y_2^2 =1\Rightarrow a=1, b=11,故選\bbox[red, 2pt]{(C)}$$解答:$$只有(D)符合y(0)=1,故選\bbox[red, 2pt]{(D)}$$
解答:$$xy'+y=3x \Rightarrow y'+{1\over x}y=3 \Rightarrow 積分因子=e^{\int 1/x\,dx} =e^{\ln x} =x,故選\bbox[red, 2pt]{(A)}$$
解答:$$依齊性定義,f(x)=0,故選\bbox[red, 2pt]{(A)}$$
解答:$$\cases{A=\begin{bmatrix} \alpha & 4\\ -2 & \beta\end{bmatrix} \\ A=A^{-1}} \Rightarrow AA=I \Rightarrow \begin{bmatrix} \alpha & 4\\ -2 & \beta\end{bmatrix} \begin{bmatrix} \alpha & 4\\ -2 & \beta\end{bmatrix} =\begin{bmatrix} \alpha^2-8 & 4(\alpha+\beta) \\ -2(\alpha+\beta) & \beta^2-8\end{bmatrix} =\begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix} \\ \Rightarrow \cases{\alpha+\beta =0\\ \alpha^2=9\\ \beta^2=9} \Rightarrow (\alpha,\beta)=(3,-3)((-3,3)不合,違反\alpha\gt \beta),故選\bbox[red, 2pt]{(D)}$$
解答:$$(A)與(D)符合y(1)=2,但其中只有(A)符合y'(1)=5,故選\bbox[red, 2pt]{(A)}$$
解答:$$\mathcal{L}\{ u(t-1)\cos t\} =e^{-s} \mathcal{L}\{\cos (t+1)\} =e^{-s}\cdot {1\over s^2+1}(s\cos 1-\sin 1),故選\bbox[red, 2pt]{(B)}$$
解答:$$只有(B)符合y(1)=\sqrt 3,故選\bbox[red, 2pt]{(B)}$$
解答:$$週期為2\ell,角度為{n\pi\over \ell}x,故選\bbox[red, 2pt]{(D)}$$
解答:$$\vec F\cdot \vec r =6-2+5=9,故選\bbox[red, 2pt]{(C)}$$
解答:$$\cases{A為3\times 3矩陣\\ B為3\times 2矩陣} \Rightarrow AB 為3\times 2矩陣,故選\bbox[red, 2pt]{(B)}$$
解答:$$AA^T為一對稱矩陣,故選\bbox[red, 2pt]{(D)}$$
解答:$$\left|\begin{matrix}1 & 2 & -1 & 3\\4 & -1 & 0 & 7\\1 & 0 & -2 & 3\\2 & 1 & -1 & 2\end{matrix}\right| \underrightarrow{餘因式A_{11}} \left|\begin{matrix}-1 & 0 & 7\\0 & -2 & 3\\1 & -1 & 2\end{matrix}\right| =4+14-3=15,故選\bbox[red, 2pt]{(A)}$$
========================= END =============================
解題僅供參考,其他歷屆試題及詳解
沒有留言:
張貼留言