國立宜蘭大學108學年度暑假轉學招生考試
解答:limt→0tantsec(2t)3t=limt→0ddttantsec(2t)ddt3t=limt→0sec2tsec(2t)+tant⋅2sec(2t)tan(2t)3=13,故選(C)解答:f(x)=x−4x+4=1−8x+4⇒f′(x)=8(x+4)2⇒f′(3)=849,故選(B)
解答:limx→∞3x−2√2x2+1=limx→∞3−2/x√2+1/x2=3√2,故選(C)
解答:f(x)=x3−3x2−24x+2⇒f′(x)=3x2−6x−24=0⇒f″
解答:2^3=a\cdot 2^2 \Rightarrow a=2,故選\bbox[red, 2pt]{(E)}
解答:\int_0^{\pi/4} \int_0^{\cos \theta} 3r^2\sin \theta \,drd\theta = \int_0^{\pi/4} \left.\left[ r^3\sin \theta \right] \right|_0^{\cos\theta}\,d\theta = \int_0^{\pi/4} \cos^3\theta\sin \theta \,d\theta = \int_0^{\pi/4} {1\over 2} \cos^2\theta\sin 2\theta \,d\theta \\=\int_0^{\pi/4} {1\over 4} (\cos 2\theta+1)\sin 2\theta \,d\theta =\int_0^{\pi/4} {1\over 8} \sin 4\theta +{1\over 4}\sin 2\theta \,d\theta =\left. \left[ -{1\over 32}\cos 4\theta -{1\over 8}\cos 2\theta \right]\right|_0^{\pi/4}\\ ={1\over 32}-(-{1\over 32}-{1\over 8})={3\over 16},故選\bbox[red, 2pt]{(D)}
解答:令\cases{u=x \Rightarrow du=dx\\ dv= e^{-x/2}\,dx \Rightarrow v=-2e^{-x/2}},則\int_0^4 xe^{-x/2}\,dx = \left.\left[ -2xe^{-x/2} -4e^{-x/2} \right] \right|_0^{4} \\ =-8e^{-2}-4e^{-2} -(-4)=4-12e^{-2},故選\bbox[red, 2pt]{(B)}
解答:令\cases{u=x \Rightarrow du=dx\\ dv= \cos x\,dx \Rightarrow v=\sin x},則\int_0^{\pi/2} x\cos x\,dx = \left. \left[ x\sin x- \int \sin x\,dx \right] \right|_0^{\pi/2}\\ = \left. \left[ x\sin x+\cos x \right] \right|_0^{\pi/2} ={\pi \over 2}-1,故選\bbox[red, 2pt]{(C)}
解答:\int_0^2 \int_0^{\sqrt{2x-x^2}} xy\,dydx =\int_0^2 \left.\left[ {1\over 2}xy^2\right]\right|_0^{\sqrt{2x-x^2}} \,dydx =\int_0^2 x^2-{1\over 2}x^3\,dx = \left.\left[ {1\over 3}x^3-{1\over 8}x^4\right]\right|_0^2 \\ ={8\over 3}-2={2\over 3},故選\bbox[red, 2pt]{(D)}
解答:\sum_{n=1}^\infty {2\over 4n^2-1} =\sum_{n=1}^\infty {2\over (2n-1)(2n+1)} =\sum_{n=1}^\infty \left({1\over 2n-1} -{1\over 2n+1} \right)= \left({1\over 1}-{1\over 3}\right) +\left({1\over 3}-{1\over 5}\right) + \cdots\\ =1,故選\bbox[red, 2pt]{(C)}
======================= END ===================
未公告標準答案,解題僅供參考
沒有留言:
張貼留言