大學入學考試中心
八十七學年度學科能力測驗
$$在三區間(0,\pi/2)、(\pi/2, 3\pi/2)、(3\pi/2, 5\pi/2)各有一交點,故選\bbox[red,2pt]{(4)}$$
解答:$$本題多項式非實係數,因此將1-i代入 \Rightarrow (1-i)^2+a(1-i)+3-i=0 \\\Rightarrow a(1-i)+3-3i=0 \Rightarrow a={3i-3\over 1-i}=-3,故選\bbox[red,2pt]{(1)}$$
解答:$$P(A\cup B) =P(A)+P(B)- P(A\cap B) \Rightarrow \max(P(A),P(B))\le P(A\cup B)\lt P(A)+P(B) \\ \Rightarrow \max({1\over 2}, {1\over 3})\le P\le ({1\over 2}+{1\over 3}) \Rightarrow {1\over 2}\le P\le {5\over 6},故選\bbox[red,2pt]{(4)}$$
解答:
解答:$$本題多項式非實係數,因此將1-i代入 \Rightarrow (1-i)^2+a(1-i)+3-i=0 \\\Rightarrow a(1-i)+3-3i=0 \Rightarrow a={3i-3\over 1-i}=-3,故選\bbox[red,2pt]{(1)}$$
解答:$$P(A\cup B) =P(A)+P(B)- P(A\cap B) \Rightarrow \max(P(A),P(B))\le P(A\cup B)\lt P(A)+P(B) \\ \Rightarrow \max({1\over 2}, {1\over 3})\le P\le ({1\over 2}+{1\over 3}) \Rightarrow {1\over 2}\le P\le {5\over 6},故選\bbox[red,2pt]{(4)}$$
解答:
$$(1) \overrightarrow{AB} \cdot \overrightarrow{AB} =\overline{AB}^2 =1\\(2) \overrightarrow{AB} \cdot \overrightarrow{AC} = \sqrt 3\cos 30^\circ =3/2\\(3) \overrightarrow{AB} \cdot \overrightarrow{AD}=2 \cos 60^\circ =1\\ (4) \overrightarrow{AB} \cdot \overrightarrow{AE} =0 \\(5)\overrightarrow{AB} \cdot \overrightarrow{AF} =1\cos 120^\circ \lt 0\\,故選\bbox[red,2pt]{(2)}$$
貳、多重選擇題
解答:$$(1)513+216 = 729 \equiv 1\mod 4 \Rightarrow 729是完全平方數\\(3)216+145= 361 \equiv 1 \mod 4 \Rightarrow 361是完全平方數 \\(5) 145+216=361 \equiv 1 \mod 4 \Rightarrow 361是完全平方數\\,故選\bbox[red,2pt]{(135)}$$解答:$$\cases{L_1: ax-4y=1\\ L_2: (a+1)x+3y=2\\ L_3: x-2y=3} \Rightarrow \cases{L_1斜率m_1=a/4\\ L_2斜率m_2=-(a+1)/3 \\ L_3斜率m_3 = 1/2} \\\Rightarrow \cases{m_1m_2= -a(a+1)/12 =-1 \Rightarrow a=3,-4\\ m_2m_3=-(a+1)/6 =-1 \Rightarrow a=5\\ m_1m_3= a/8 =-1 \Rightarrow a=-8}\\ \Rightarrow a=-8,-4,-1,3,5皆可能形成直角三角形,故選\bbox[red,2pt]{(1245)}$$
解答:$$(1)\times: \cos 50^\circ = \sin 40^\circ \lt \sin 50^\circ \Rightarrow \sin 50^\circ \gt \cos 50^\circ\\ (2) \times: \sin 50^\circ \gt \cos 50^\circ \Rightarrow \cases{\tan 50^\circ={\sin 50^\circ \over \cos 50^\circ} \gt 1\\ \cot 50^\circ ={1\over \tan 50^\circ }\lt 1} \Rightarrow \tan 50^\circ \gt \cot 50^\circ \\(3)\bigcirc: \sin 50^\circ \lt 1 \Rightarrow {\sin 50^\circ \over \cos 50^\circ } \lt {1\over \cos 50^\circ } \Rightarrow \tan 50^\circ \lt \sec 50^\circ \\ (4)\bigcirc: \cases{\sin 230^\circ = -\sin 50^\circ \\ \cos 230^\circ = -\cos 50^\circ } \Rightarrow \sin 230^\circ \lt \cos 230^\circ\\ (5)\times: \cases{\tan 230^\circ =\tan 50^\circ \\ \cot 230^\circ =\cot 50^\circ } \Rightarrow \tan 230^\circ \gt \cot 230^\circ \\,故選\bbox[red,2pt]{(34)}$$
解答:
$$\cases{A(1,2,3) \\ B(2,5,3) \\C(2,6,4)} \Rightarrow \cases{\overline{AC}中點E= (3/2,4,7/2) \\\overline{AB}中點F= (3/2,7/2 , 3) \\\overline{BC}中點G= (2,11/2, 7/2) } \Rightarrow \cases{ABCP為平行四邊形\Rightarrow P=2E-B=(1,3,4) \\ACBQ為平行四邊形\Rightarrow Q=2F-C=(1,1,2) \\ABRC為平行四邊形\Rightarrow R=2G-A=(3,9,4) }\\ D\in \{P,Q,R\} \Rightarrow A、B、C、D構成一平行四邊形,故選\bbox[red,2pt]{(235)}$$
解答:$$\cases{f(4)\gt 0\\ f(5)\lt 0} \Rightarrow f(1)為極大值\\(1)\bigcirc: 圖形對稱x=1 \Rightarrow f(4)=f(1+3)=f(1-3)=f(-2) \gt 0 \Rightarrow f(0)\gt 0\\ (2)\bigcirc: 理由同上\\(3)\bigcirc: 理由同上\\(4) \times: f(5)=f(1+4)=f(1-4)=f(-3)\lt 0\\(5) \times: f(-4)=f(1-5)=f(1+5) =f(6)\lt 0\\,故選\bbox[red,2pt]{(123)}$$
解答:$$a({1\over 2}+{1\over 2^3}+\cdots)+ b({1\over 2^2}+{1\over 2^4}+\cdots )=a\cdot {1/2\over 1-1/4}+ b\cdot {1/4\over 1-1/4}\\ ={2\over 3}a+ {1\over 3}b=3 \Rightarrow 2a+b =\bbox[red,2pt]{9}$$
解答:$$假設\cases{甲生產速度=a 萬/時 \\乙生產速度 =b 萬/時 \\丙生產速度=c 萬/時 } \Rightarrow \cases{10(a+b+c)=3 \\15(b+c)= 3\\ 15a+30c = 3} \Rightarrow \cases{a=1/10\\ b=3/20\\ c=1/20} \\ \Rightarrow 全由乙生產需要{3\over b}= \bbox[red, 2pt]{20}小時$$
解答:
解答:$$(1)\bigcirc: 由圖形可知:\cases{f(1)=2\\ f(2)=4=2^2\\ f(3)=8 =2^3 \\ f(4)=16=2^4} \Rightarrow f(t)=2^t\\ (2) \bigcirc: f(5)=2^5=32 \gt 30\\(3)\times: \log_2 12-\log_2 4 = 2+ \log_2 3-2=\log_2 3={\log 3\over \log 2}={0.4771\over 0.301} \approx 1.58\gt {3\over 2} \\(4)\bigcirc: \log_2 2+\log_2 3= \log_2 6\\(5) \times: \cases{1-3月:{8-2\over 2} =3\\ 2-4月:{16-4\over 2}= 6} \Rightarrow 兩者速度不相等\\,故選\bbox[red, 2pt]{(124)}$$
第二部分:填充題
解答:$$假設三位數字為a,b,c \Rightarrow \begin{array}{} a& b& c& 數量\\\hline 2 & 0-9& 0 & 10\\ 3 & 0-9& 1 & 10\\ 4 & 0-9& 2& 10 \\ 1,5& 0-9& 3 & 20\\ 2,6 & 0-9 & 4& 20\\ 3,7 & 0-9& 5 & 20\\ 4,8 & 0-9 & 6 & 20\\ 5,9 & 0-9& 7 & 20\\ 6 & 0-9& 8 & 10 \\ 7 & 0-9 & 9 & 10\\\hline \end{array} \Rightarrow 共\bbox[red, 2pt]{150}個$$解答:$$a({1\over 2}+{1\over 2^3}+\cdots)+ b({1\over 2^2}+{1\over 2^4}+\cdots )=a\cdot {1/2\over 1-1/4}+ b\cdot {1/4\over 1-1/4}\\ ={2\over 3}a+ {1\over 3}b=3 \Rightarrow 2a+b =\bbox[red,2pt]{9}$$
解答:$$假設\cases{甲生產速度=a 萬/時 \\乙生產速度 =b 萬/時 \\丙生產速度=c 萬/時 } \Rightarrow \cases{10(a+b+c)=3 \\15(b+c)= 3\\ 15a+30c = 3} \Rightarrow \cases{a=1/10\\ b=3/20\\ c=1/20} \\ \Rightarrow 全由乙生產需要{3\over b}= \bbox[red, 2pt]{20}小時$$
解答:
$$將12條稜線編號:1-12,如上圖;則互為歪斜的稜線:(1,7),(1,8), (1,9,), (1,11)\\ (2,5),(2,8),(2, 10), (2,12), (3,5), (3,6), (3,9), (3,11), (4,6), (4,7), (4,10), (4,12)\\ (5,11),(5,12), (6,9), (6,12), (7,9,), (7,10), (8,10), (8,11),共\bbox[red,2pt]{24}對$$
解答:
解答:
$$路徑長度=3條長紅線+3條短藍線,其中藍線長度為\sqrt 2,紅線長度8-\sqrt 2\\ 因此路徑長=3(8-\sqrt 2+\sqrt 2)=\bbox[red,2pt]{24}$$
解答:$$a_{n+2}=a_{n+1}+ a_n \Rightarrow a_4=a_3+a_2 = 2a_2+a_1 = 2r+1=2-\sqrt 5 \Rightarrow r= \bbox[red, 2pt]{1-\sqrt 5\over 2}$$
解答:$$\overline{CD} =\overline{AD}-\overline{AC}=20-50=150; 又\angle BCA=60^\circ =\angle D+\angle CBD = 30^\circ+\angle CBD\\ \Rightarrow \angle CBD=30^\circ \Rightarrow \overline{BC}=\overline{CD}=150 \Rightarrow \cos \angle ACB ={\overline{AC}^2 +\overline{CB}^2- \overline{AB}^2 \over 2\cdot \overline{AC}\cdot \overline{CB}}\\ \Rightarrow {1\over 2}={50^2+150^2- \overline{AB}^2 \over 2\cdot 50\cdot 150} \Rightarrow \overline{AB}^2= 17500 \Rightarrow \overline{AB}= \bbox[red, 2pt]{50\sqrt 7}$$
解答:$$假設f(x)=(x^2+x+1)P(x)+ax+b \Rightarrow (x+1)f(x)\\= (x+1)(x^2+x+1)P(x)+ (ax+b)(x+1) =(x+1)(x^2+x+1)P(x)+ax^2+(a+b)x+b \\ =(x+1)(x^2+x+1)P(x)+ a(x^2+x+1)+ bx+(b-a) \Rightarrow bx+(b-a)=5x+3\\ \Rightarrow \cases{b=5\\ b-a=3} \Rightarrow a=2 \Rightarrow 餘式為\bbox[red, 2pt]{2x+5}$$
解答:$$P在\overline{QF}的中垂線上 \Rightarrow \overline{PF}=\overline{PQ} \Rightarrow \overline{OP}+\overline{PF}= \overline{OQ} =圓半徑=6 \gt \overline{OF}=4\\ \Rightarrow P的軌跡為一橢圓,且\cases{中心=\overline{OF}中點=(2,0)\\ 2c= \overline{OF}=4 \Rightarrow c=2\\ 2a=6 \Rightarrow a=3} \Rightarrow b=\sqrt{3^2-2^2}= \sqrt 5 \\ \Rightarrow 橢圓方程式: \bbox[red, 2pt]{{(x-2)^2\over 9}+{y^2 \over 5}=1 }$$
解答:$$依試題所附公式:I_k= {\sum p_{ik}q_i\over \sum p_{i0} q_i}\times 100\\ ={16\cdot 45+ 97\cdot 5+ 74\cdot 0.5+ 15\cdot 4+ 13\cdot 3+ 54\cdot 0.8\over 7.6\cdot 45+ 49\cdot 5+ 36\cdot 0.5+ 5.6\cdot 4+ 4.7\cdot 3+ 25\cdot 0.8} \times 100\\ ={1384.2\over 661.5}\times 100=209.25\% \Rightarrow 高出209.25\%-100\%\approx \bbox[red, 2pt]{109}\%$$
解答:$$a_{n+2}=a_{n+1}+ a_n \Rightarrow a_4=a_3+a_2 = 2a_2+a_1 = 2r+1=2-\sqrt 5 \Rightarrow r= \bbox[red, 2pt]{1-\sqrt 5\over 2}$$
解答:$$\overline{CD} =\overline{AD}-\overline{AC}=20-50=150; 又\angle BCA=60^\circ =\angle D+\angle CBD = 30^\circ+\angle CBD\\ \Rightarrow \angle CBD=30^\circ \Rightarrow \overline{BC}=\overline{CD}=150 \Rightarrow \cos \angle ACB ={\overline{AC}^2 +\overline{CB}^2- \overline{AB}^2 \over 2\cdot \overline{AC}\cdot \overline{CB}}\\ \Rightarrow {1\over 2}={50^2+150^2- \overline{AB}^2 \over 2\cdot 50\cdot 150} \Rightarrow \overline{AB}^2= 17500 \Rightarrow \overline{AB}= \bbox[red, 2pt]{50\sqrt 7}$$
解答:$$假設f(x)=(x^2+x+1)P(x)+ax+b \Rightarrow (x+1)f(x)\\= (x+1)(x^2+x+1)P(x)+ (ax+b)(x+1) =(x+1)(x^2+x+1)P(x)+ax^2+(a+b)x+b \\ =(x+1)(x^2+x+1)P(x)+ a(x^2+x+1)+ bx+(b-a) \Rightarrow bx+(b-a)=5x+3\\ \Rightarrow \cases{b=5\\ b-a=3} \Rightarrow a=2 \Rightarrow 餘式為\bbox[red, 2pt]{2x+5}$$
解答:$$P在\overline{QF}的中垂線上 \Rightarrow \overline{PF}=\overline{PQ} \Rightarrow \overline{OP}+\overline{PF}= \overline{OQ} =圓半徑=6 \gt \overline{OF}=4\\ \Rightarrow P的軌跡為一橢圓,且\cases{中心=\overline{OF}中點=(2,0)\\ 2c= \overline{OF}=4 \Rightarrow c=2\\ 2a=6 \Rightarrow a=3} \Rightarrow b=\sqrt{3^2-2^2}= \sqrt 5 \\ \Rightarrow 橢圓方程式: \bbox[red, 2pt]{{(x-2)^2\over 9}+{y^2 \over 5}=1 }$$
解答:$$依試題所附公式:I_k= {\sum p_{ik}q_i\over \sum p_{i0} q_i}\times 100\\ ={16\cdot 45+ 97\cdot 5+ 74\cdot 0.5+ 15\cdot 4+ 13\cdot 3+ 54\cdot 0.8\over 7.6\cdot 45+ 49\cdot 5+ 36\cdot 0.5+ 5.6\cdot 4+ 4.7\cdot 3+ 25\cdot 0.8} \times 100\\ ={1384.2\over 661.5}\times 100=209.25\% \Rightarrow 高出209.25\%-100\%\approx \bbox[red, 2pt]{109}\%$$
========================= END ==========================
解答僅供參考,其他歷屆試題及詳解
沒有留言:
張貼留言