臺灣綜合大學系統111學年度學士班轉學生聯合招生考試
科目名稱:微積分B
解答:(a)limx→04x−1x=limx→0(4x−1)′(x)′=limx→0ln4⋅4x1=ln4(b)limx→−6√10−x−4x+6=limx→−6(√10−x−4)′(x+6)′=limx→−6−12√10−x=−18解答:f(x)=x2−3x+2=(x−2)(x−1)⇒{f(x)≥0,x≥2f(x)≤0,1≤x≤2f(x)≥0,x≤1⇒∫30|x2−3x+2|dx=∫10(x2−3x+2)dx−∫21(x2−3x+2)dx+∫32(x2−3x+2)dx=[13x3−32x2+2x]|10−[13x3−32x2+2x]|21+[13x3−32x2+2x]|32=56−(23−56)+(32−23)=116
解答:∫π0e−xsin(π−x)dx=∫π0e−xsinxdx=[−e−xsinx]|π0+∫π0e−xcosxdx=[−e−xsinx−e−xcosx]|π0−∫π0e−xsinxdx⇒2∫π0e−xsinxdx=[−e−xsinx−e−xcosx]|π0⇒∫π0e−xsinxdx=12[−e−xsinx−e−xcosx]|π0=12(1+e−π)
解答:u=√x+1⇒du=dx2√x⇒∫911√x(1+√x)2dx=∫422u2du=[−2u]|42=−12+1=12
解答:∫2016x2+7x+2dx=∫20(22x+1−33x+2)dx=[ln(2x+1)−ln(3x+2)]|20=ln5−ln8+ln2=ln54
解答:y2(x2+y2)=x2⇒2yy′(x2+y2)+y2(2x+2yy′)=2x將{x=√2/2y=√2/2代入上式⇒√2y′+12(√2+√2y′)=√2⇒y′=13
解答:(a)u(x,y)=y+xexy⇒ux=exy+xyexy⇒ux(0,1)=1(b)u(x,y)=y+xexy=(2t+1)+(2s+t)e(2s+t)(2t+1)⇒∂u∂t=2+e(2s+t)(2t+1)+(2s+t)(4s+4t+1)e(2s+t)(2t+1)⇒∂u∂t(0,0)=3
解答:(a)ex=1+x+x22!+x33!+⋯+xnn!+⋯⇒e2=1+2+222!+233!+⋯+2nn!+⋯⇒2e2=2+22+232!+⋯+2n(n−1)!+⋯=∞∑n=12n(n−1)!=∞∑n=1nan⇒∞∑n=1nan=2e2(b)∫∞11x(lnx)dx=[ln(lnx)]|∞1=∞⇒∞∑n=11n(lnn)發散
解答:f(x,y)=3x2+2y2−4y⇒{fx=6xfy=4y−4⇒{fxx=6fyy=4fxy=0⇒D(x,y)=fxxfyy−f2xy>0因此{fx=0fy=0⇒(x,y)=A(0,1)非鞍點(∵
解答:\cases{f(x,y)= {5\over 4}x^2 +{7\over 4}y^2- {\sqrt 3\over 2}xy\\ g(x,y)=x^2+y^2-1} \Rightarrow \cases{f_x= \lambda g_x\\ f_y= \lambda g_y\\ g=0} \Rightarrow \cases{{5\over 2}x-{\sqrt 3\over 2}y = \lambda (2x) \cdots(1)\\ {7\over 2}y-{\sqrt 3\over 2}x = \lambda(2y) \cdots(2)\\ x^2+y^2=1 \cdots(3)} \\ 因此 \cases{{(1)\over (2)} \Rightarrow xy={\sqrt 3\over 2}(x^2-y^2) \\ (3) \Rightarrow \cases{x=\cos\theta \\ y=\sin \theta}} \Rightarrow \cos\theta \sin\theta ={\sqrt 3\over 2}(\cos^2\theta -\sin^2\theta) \Rightarrow \sin 2\theta =\sqrt 3\cos 2\theta\\ \Rightarrow \tan 2\theta =\sqrt 3 \Rightarrow 2\theta = {\pi\over 3}+k\pi \Rightarrow \theta = {\pi\over 6}+{k\pi\over 2},k\in \mathbb{Z} \\\Rightarrow \theta =\pi/6,2\pi/3, 7\pi/6,5\pi/3 \Rightarrow (x,y)=\cases{A(\sqrt 3/2, 1/2)\\B(-1/2,\sqrt 3/2) \\C(-\sqrt 3/2,-1/2) \\D(1/2,-\sqrt 3/2)} \Rightarrow \cases{f(A)= f(C)=1 極小值\\f(B)=f(D)=2 極大值} \\ \Rightarrow 極值為\bbox[red, 2pt]{1及2},其中2為極大值、1為極小值;
==================== END ===========================
未公告答案,解題僅供參考
沒有留言:
張貼留言