Loading [MathJax]/jax/element/mml/optable/MathOperators.js

2022年8月27日 星期六

111年台綜大轉學考-微積分B詳解

臺灣綜合大學系統111學年度學士班轉學生聯合招生考試

科目名稱:微積分B

解答(a)limx04x1x=limx0(4x1)(x)=limx0ln44x1=ln4(b)limx610x4x+6=limx6(10x4)(x+6)=limx61210x=18
解答f(x)=x23x+2=(x2)(x1){f(x)0,x2f(x)0,1x2f(x)0,x130|x23x+2|dx=10(x23x+2)dx21(x23x+2)dx+32(x23x+2)dx=[13x332x2+2x]|10[13x332x2+2x]|21+[13x332x2+2x]|32=56(2356)+(3223)=116
解答π0exsin(πx)dx=π0exsinxdx=[exsinx]|π0+π0excosxdx=[exsinxexcosx]|π0π0exsinxdx2π0exsinxdx=[exsinxexcosx]|π0π0exsinxdx=12[exsinxexcosx]|π0=12(1+eπ)
解答u=x+1du=dx2x911x(1+x)2dx=422u2du=[2u]|42=12+1=12
解答2016x2+7x+2dx=20(22x+133x+2)dx=[ln(2x+1)ln(3x+2)]|20=ln5ln8+ln2=ln54
解答y2(x2+y2)=x22yy(x2+y2)+y2(2x+2yy)=2x{x=2/2y=2/22y+12(2+2y)=2y=13
解答(a)u(x,y)=y+xexyux=exy+xyexyux(0,1)=1(b)u(x,y)=y+xexy=(2t+1)+(2s+t)e(2s+t)(2t+1)ut=2+e(2s+t)(2t+1)+(2s+t)(4s+4t+1)e(2s+t)(2t+1)ut(0,0)=3
解答(a)ex=1+x+x22!+x33!++xnn!+e2=1+2+222!+233!++2nn!+2e2=2+22+232!++2n(n1)!+=n=12n(n1)!=n=1nann=1nan=2e2(b)11x(lnx)dx=[ln(lnx)]|1=n=11n(lnn)
解答f(x,y)=3x2+2y24y{fx=6xfy=4y4{fxx=6fyy=4fxy=0D(x,y)=fxxfyyf2xy>0{fx=0fy=0(x,y)=A(0,1)(
解答\cases{f(x,y)= {5\over 4}x^2 +{7\over 4}y^2- {\sqrt 3\over 2}xy\\ g(x,y)=x^2+y^2-1} \Rightarrow \cases{f_x= \lambda g_x\\ f_y= \lambda g_y\\ g=0} \Rightarrow \cases{{5\over 2}x-{\sqrt 3\over 2}y = \lambda (2x) \cdots(1)\\ {7\over 2}y-{\sqrt 3\over 2}x = \lambda(2y) \cdots(2)\\ x^2+y^2=1 \cdots(3)} \\ 因此 \cases{{(1)\over (2)} \Rightarrow xy={\sqrt 3\over 2}(x^2-y^2) \\ (3) \Rightarrow \cases{x=\cos\theta \\ y=\sin \theta}} \Rightarrow \cos\theta \sin\theta ={\sqrt 3\over 2}(\cos^2\theta -\sin^2\theta) \Rightarrow \sin 2\theta =\sqrt 3\cos 2\theta\\ \Rightarrow \tan 2\theta =\sqrt 3 \Rightarrow 2\theta = {\pi\over 3}+k\pi \Rightarrow \theta = {\pi\over 6}+{k\pi\over 2},k\in \mathbb{Z} \\\Rightarrow \theta =\pi/6,2\pi/3, 7\pi/6,5\pi/3 \Rightarrow (x,y)=\cases{A(\sqrt 3/2, 1/2)\\B(-1/2,\sqrt 3/2) \\C(-\sqrt 3/2,-1/2) \\D(1/2,-\sqrt 3/2)} \Rightarrow \cases{f(A)= f(C)=1 極小值\\f(B)=f(D)=2 極大值} \\ \Rightarrow 極值為\bbox[red, 2pt]{1及2},其中2為極大值、1為極小值;

==================== END ===========================

未公告答案,解題僅供參考

沒有留言:

張貼留言