2022年8月4日 星期四

91年大學學測(補考)-數學詳解

大學入學考試中心
九十一學年度學科能力測驗(補考)

第一部分:選擇題  

壹、單一選擇題 

解答:$$只需考慮奇數,231=3\times 77、235=5\times 47、237=3\times 79,只有233及239是質數,故選\bbox[red, 2pt]{(2)}$$
解答:$$x^4+2x^2-1=(x^2+1)^2-2=0 \Rightarrow (x^2+1)^2=2 \Rightarrow x^2+1=\sqrt 2 \Rightarrow x=\pm (\sqrt 2-1)\\ \Rightarrow 有2個實根 ,故選\bbox[red, 2pt]{(3)}$$
解答

$$(1)及(3)顯然不是雙曲線;其它圖形以漸近線作為比較,是否圖形越來越逼近漸近線,故選\bbox[red, 2pt]{(4)}$$
解答:$$y={1\over 2}x^2  \Rightarrow x^2=4\cdot {1\over 2}y \Rightarrow c={1\over 2} \Rightarrow 焦點F(0.{1\over 2}),故選\bbox[red, 2pt]{(1)}$$

解答:$$3+3+1+1=8 \Rightarrow 約8\% \Rightarrow 12萬\times 8\% = 9600,故選\bbox[red, 2pt]{(2)}$$
解答:$$\cases{假設\triangle ABC 外接圓半徑R_c \\ 假設\triangle ABD 外接圓半徑R_d \\ 假設\triangle ABE 外接圓半徑R_e  } \Rightarrow \cases{{\overline{AC}\over \sin B}=2R_c \\[1ex] {\overline{AD}\over \sin B}=2R_d \\[1ex]{\overline{AE}\over \sin B}=2R_e },由於\overline{AC}= \overline{AD} \gt \overline{AE},因此  2R_c = 2R_d\gt 2R_e\\ ,即c= d\gt e,故選\bbox[red, 2pt]{(5)}$$

貳、多重選擇題

解答:$$(1)\bigcirc: (\pm x)^2-y^2=1\\(2) \times:(1,0)在曲線上,但(0,1)不在曲線上\\ (3)\bigcirc: 漸近線為x^2-y^2=0 ,即x=\pm y\\(4) \times: \cases{a=1\\b=1} \Rightarrow c=\sqrt 2 \Rightarrow 焦點(\pm \sqrt 2,0)\\(5)\bigcirc: a=1 \Rightarrow 頂點(\pm 1,0)\\,故選\bbox[red, 2pt]{(135)}$$
解答:$$(3)\times: \cases{b=0.9\\ a=0.1}\Rightarrow b-a=0.8 \gt 0\\(4) \times: \cases{a=0.8\\ b=0.1} \Rightarrow a/b=8 \not \lt 1\\,故選\bbox[red, 2pt]{(125)}$$
解答:$$(1)\times: \angle C=90^\circ \Rightarrow \cos C=0,但{h\over a}+{h\over b}\gt 0\\ (2)\times: 反例如(1)\\ (3)\times: \cos(A+B)= \cos(180^\circ -C) =-\cos C \ne \cos C\\ (4)\bigcirc: 餘弦定理\\ (5)\bigcirc: \cases{h^2= a^2-x^2\\ h^2=b^2-y^2} \Rightarrow 2h^2=a^2+b^2-(x^2+y^2) =a^2+b^2-(x+y)^2+2xy\\\qquad =a^2+b^2-c^2 +2xy \Rightarrow h^2-xy={a^2+b^2-c^2\over 2} \Rightarrow \cos C ={a^2+b^2-c^2\over 2ab} ={h^2-xy\over ab}\\,故選\bbox[red, 2pt]{(45)}$$
解答
(1)(2)
(4)$$由(2)之圖例可知m_2\not \le 0$$

$$其餘皆正確,故選\bbox[red, 2pt]{(35)}$$
解答:$$(1)\bigcirc: f(x)={1\over 2}(\cos 10x-\cos 12x)={1\over 2}(-2)\sin{10+12\over 2}x\sin {10-12\over 2}x \\\qquad \quad =-\sin 11x\sin(-x)=\sin 11x\sin x \\(2) \bigcirc:\cases{|\sin 11x|\le 1 \\|\sin x|\le 1} \Rightarrow |f(x)|=|\sin 11x\sin x| =|\sin 11x|| \sin x| \le 1 \\(3) \times: f(x)=\sin 11x\sin x=1 \Rightarrow \cases{\sin x=1 \Rightarrow  x=2k\pi +{\pi \over 2}\\ \sin 11x =1 \Rightarrow x=2t\pi +{\pi\over 22}},兩者無交集 \Rightarrow f(x)\ne 1\\ (4) \bigcirc: x={\pi\over 2} \Rightarrow \cases{\sin x=1\\ \sin 11x= -1} \Rightarrow f(x)=-1 \\(5)\bigcirc: x=k\pi,k\in \mathbb{Z} \Rightarrow f(x)=0\\,故選\bbox[red, 2pt]{(1245)}$$
解答
(1)三交線交於一點↓
 

(2)三交線相互平行
$$其他皆不可能,故選\bbox[red, 2pt]{(345)}$$

第二部分:填充題

解答:$$11^{15}=(11^3)^5 = 1331^5 \equiv 31^5 \mod 100 \equiv 31^2 \times 31^2 \times 31 \mod 100 \\ \equiv 61\times 61\times 31 \mod 100 \equiv 21 \times 31 \mod 100 \equiv \bbox[red, 2pt]{51} \mod 100$$
解答:$$\cases{z= 2\left( \cos{\pi\over 7}+ i\sin {\pi\over 7}\right) \\i=\cos{\pi\over 2} +i \sin {\pi\over 2}} \Rightarrow zi= 2\left( \cos({\pi\over 7}+{\pi\over 2})+ i\sin ({\pi\over 7}+{\pi\over 2})\right) =2(\cos {9\pi \over 14} +i\sin{9\pi\over 14})\\ \Rightarrow a=\bbox[red, 2pt]{9\over 14}$$
解答:$$年利率4\% \Rightarrow 半年利率2\% \Rightarrow Q=10000(1+2\%)^2 = \bbox[red, 2pt]{10404}$$
解答

$$作\overline{MR}\parallel \overline{AD}、\overline{NQ} \parallel \overline{AB},並令\angle MPR=\theta,則\angle NQS=\theta,見上圖;\\ \cases{\triangle PMR: \sin\theta =a/3\\ \triangle NQS: \cos\theta =a/4} \Rightarrow ({a\over 3})^2 +({a\over 4})^2 =1 \Rightarrow a^2= {3^2\times 4^2\over 25} \Rightarrow a=\bbox[red, 2pt]{12\over 5}$$
解答:$$\cases{5x+4y-4z=kx\\ 4x+5y+2z=ky \\ x+y+z=0} \Rightarrow \cases{(5-k)x+4y-4z=0\\ 4x+(5-k)y+2z=0 \\ x+y+z=0} \Rightarrow \left|\begin{matrix}5-k & 4 & -4 \\4 & 5-k & 2 \\1 & 1 & 1\end{matrix}\right| =0\\ \Rightarrow k^2-12k+11=0 \Rightarrow (k-1)(k-11)=0 \Rightarrow k=\bbox[red, 2pt]{1} (k=11不合,違反k\lt 10)$$
解答:$$\cases{邊長為1的正方形有6\times 4=24個\\ 邊長為2的正方形有5\times 3=15個\\ 邊長為3的正方形有4\times 2= 8個\\ 邊長為4的正方形有3 \times 1=3個 } \Rightarrow 共有24+15+8+3= \bbox[red, 2pt]{50}個正方形$$
解答:$${4\over 3}\pi (12^3-5^3)= {4\over 3} \cdot \pi \cdot 2^3 \cdot a \Rightarrow a={12^3-5^3\over 2^3} =200{3\over 8} \Rightarrow 最多\bbox[red, 2pt]{200}顆$$
解答:$$\cases{猜對3題的機率:1/8,期望值:5\cdot (1/8)\\ 猜對2題的機率:C^3_2/8=3/8,期望值:2.5\cdot(3/8)\\ 猜對1題的期望值:0}\\ \Rightarrow 期望值={5\over 8}+{7.5\over 8}= \bbox[red,2pt]{1 +{9\over 16}}$$

========================= END ==========================

解答僅供參考,其他歷屆試題及詳解

沒有留言:

張貼留言