臺灣綜合大學系統111學年度學士班轉學生聯合招生考試
科目名稱:微積分A
解答:L=limx→0(eax−1x2−ax+bx)=limx→0(eax−1−ax3+bxx2)=limx→0((eax−1−ax3+bx)′(x2)′)=limx→0(aeax−3ax2+b2x)⇒a+b=0⋯(1)L=limx→0((aeax−3ax2+b)′(2x)′)=limx→0(a2eax−6ax2)=12⇒a2=1⇒a=±1⇒b=∓1⇒(a,b)=(1,−1)或(−1,1)解答:(a)令x=sec2y⇒secy=±√x⇒y=sec−1(√x)⇒f−1(x)=sec−1(√x)⇒(f−1)′=1√x√x−1⋅12√x⇒(f−1)′(4)=18√3(b){x=rsy=r+s⇒{∂x∂s=r∂y∂s=1⇒∂h∂s(r=1,s=1)=∂h∂x∂x∂s(r=1,s=1)+∂h∂y∂y∂s(r=1,s=1)=∂h∂x(x=1,y=1+1=2)+∂h∂y(1,2)=∂f∂x(1,2)+∂f∂y(1,2)=2+1=3
解答:f(x)=∫x20(1−t2)et2dt⇒f′(x)=2x(1−x4)ex4≥0⇒x(1−x4)≥0⇒x(1−x)(1+x)(1+x2)≥0⇒x(1−x)(1+x)≥0⇒x(x+1)(x−1)≤0⇒x∈[0,1]∪(−∞,−1]
解答:令x=atant⇒dx=asec2tdt⇒I=∫a0x2(x2+a2)3/2dx=∫π/40a2tan2t(a2tan2t+a2)3/2⋅asec2tdt=∫π/40a2tan2ta3sec3t⋅asec2tdt=∫π/40tan2tsectdt=∫π/40sec2t−1sectdt=∫π/40(sect−cost)dt=[ln|sect+tant|−sint]|π/40=(ln(√2+1)−√22)
解答:

{x=rcosθy=rsinθ⇒{r=4sinθ=4y/r⇒r2=4y⇒x2+y2−4y=0⇒x2+(y−2)2=4r=4⇒x2+y2=4⇒{Γ1:{圓心B(0,2)圓半徑r=2Γ2:{圓心D(0,0)圓半徑r=2⇒Γ1與Γ2交集為上圖黃色區域;又{△ABD與△BCD皆為邊長為2的正三角形,面積均為√34⋅22=√3扇形DABC面樍為三分之一圓面積=43π⇒黃色面積=2(43π−2√3)+2√3=83π−2√3⇒欲求藍色面積=4π−(83π−2√3)=43π+2√3
解答:∫∞31xlnxdx=[lnlnx]|∞3=∞⇒∞∑n=31nlnn發散Case I: 0≤p≤1⇒∞∑n=31nplnn≥∞∑n=31nlnn⇒∞∑n=31nplnn發散⇒∞∑n=21nplnn發散Case II: p>1⇒∞∑n=31nplnn≤∞∑n=31np<∞⇒∞∑n=31nplnn收斂⇒∞∑n=21nplnn收斂⇒p>1該級數收斂
解答:觀察∞∑n=0x2n(n+3)!=13!+x24!+x45!+x66!+x87!+x108!+x129!+⋯由ex=1+x+x22!+x33!+x44!+⋯⇒ex2=1+x2+x42!+x63!+x84!+⋯⇒1x6ex2=1x6+1x4+12!x2+13!+x24!+x45!+x66!+x87!⋯⇒1(x+2)6e(x+2)2=1(x+2)6+1(x+2)4+12(x+2)2+13!+(x+2)24!+(x+2)45!+(x+2)66!+(x+2)87!⋯⇒∞∑n=0(x+2)2n(n+3)!=1(x+2)6e(x+2)2−1(x+2)6−1(x+2)4−12(x+2)2
解答:令{f(x,y,z)=x2+y2+z2g(x,y,z)=x2+2y2+3z2−1⇒{fx=λgxfy=λgyfz=λgzg=0⇒{2x=λ(2x)⇒2x(1−λ)=0⋯(1)2y=λ(4y)⇒2y(1−2λ)=0⋯(2)2z=λ(6z)⇒2z(1−3λ)=0⋯(3)x2+2y2+3z2=1⋯(4)⇒(λ,x,y,z)=(1,±1,0,0),(1/2,0,±1√2,0),(1/3,0,0,±1√3)⇒{f(±1,0,0)=1f(0,±1√2,0)=12f(0,0,±1√3)=13⇒{global maximum= 1global minimum= 1/3
解答:令{x=u/vy=v⇒|xuxvyuyv|=|1/v−u/v201|=1v因此{y=x⇒u/v=v⇒u=v2y=3x⇒3u/v=v⇒3u=v2xy=1⇒u=1xy=3⇒u=3,又(x,y)在第一象限⇒{u/v>0v>0⇒{u>0v>0⇒∬RyxexydA=∫31∫√3u√uv2ueu1vdvdu=∫31∫√3u√uvueudvdu=∫31eudu=e3−e
解答:C:\cases{x=2\cos \theta \\ y=2\sin \theta},\theta=0-\pi \Rightarrow \cases{dx= -2\sin\theta d\theta\\ dy = 2\cos\theta d\theta}\\ \Rightarrow \int_C (1-y^3)dx +(x^3+e^{-y^2})dy =\int_0^\pi (1-8\sin^3\theta)(-2\sin \theta d\theta)+ (8\cos^3\theta +e^{-4\sin^2\theta})(2\cos\theta d\theta) \\ \int_0^\pi 2\cos\theta e^{-4\sin^2\theta} +16(\sin^4\theta +\cos^4\theta )-2\sin\theta \,d\theta = \int_0^\pi 0+16(\sin^4\theta +\cos^4\theta )-2\sin\theta \,d\theta\\=16\cdot {3\pi\over 4} -2\cdot 2= \bbox[red, 2pt]{12\pi-4}
解答:觀察∞∑n=0x2n(n+3)!=13!+x24!+x45!+x66!+x87!+x108!+x129!+⋯由ex=1+x+x22!+x33!+x44!+⋯⇒ex2=1+x2+x42!+x63!+x84!+⋯⇒1x6ex2=1x6+1x4+12!x2+13!+x24!+x45!+x66!+x87!⋯⇒1(x+2)6e(x+2)2=1(x+2)6+1(x+2)4+12(x+2)2+13!+(x+2)24!+(x+2)45!+(x+2)66!+(x+2)87!⋯⇒∞∑n=0(x+2)2n(n+3)!=1(x+2)6e(x+2)2−1(x+2)6−1(x+2)4−12(x+2)2
解答:令{f(x,y,z)=x2+y2+z2g(x,y,z)=x2+2y2+3z2−1⇒{fx=λgxfy=λgyfz=λgzg=0⇒{2x=λ(2x)⇒2x(1−λ)=0⋯(1)2y=λ(4y)⇒2y(1−2λ)=0⋯(2)2z=λ(6z)⇒2z(1−3λ)=0⋯(3)x2+2y2+3z2=1⋯(4)⇒(λ,x,y,z)=(1,±1,0,0),(1/2,0,±1√2,0),(1/3,0,0,±1√3)⇒{f(±1,0,0)=1f(0,±1√2,0)=12f(0,0,±1√3)=13⇒{global maximum= 1global minimum= 1/3
解答:令{x=u/vy=v⇒|xuxvyuyv|=|1/v−u/v201|=1v因此{y=x⇒u/v=v⇒u=v2y=3x⇒3u/v=v⇒3u=v2xy=1⇒u=1xy=3⇒u=3,又(x,y)在第一象限⇒{u/v>0v>0⇒{u>0v>0⇒∬RyxexydA=∫31∫√3u√uv2ueu1vdvdu=∫31∫√3u√uvueudvdu=∫31eudu=e3−e
解答:C:\cases{x=2\cos \theta \\ y=2\sin \theta},\theta=0-\pi \Rightarrow \cases{dx= -2\sin\theta d\theta\\ dy = 2\cos\theta d\theta}\\ \Rightarrow \int_C (1-y^3)dx +(x^3+e^{-y^2})dy =\int_0^\pi (1-8\sin^3\theta)(-2\sin \theta d\theta)+ (8\cos^3\theta +e^{-4\sin^2\theta})(2\cos\theta d\theta) \\ \int_0^\pi 2\cos\theta e^{-4\sin^2\theta} +16(\sin^4\theta +\cos^4\theta )-2\sin\theta \,d\theta = \int_0^\pi 0+16(\sin^4\theta +\cos^4\theta )-2\sin\theta \,d\theta\\=16\cdot {3\pi\over 4} -2\cdot 2= \bbox[red, 2pt]{12\pi-4}
==================== END ===========================
未公告答案,解題僅供參考
第八題 case1 y z好像解錯了 感謝分享
回覆刪除謝謝提醒! 已修訂
刪除第10題用格林定理會不會更方便
回覆刪除從(2,0)到(-2,0)不是封閉區間,不能用Green Therorem
刪除補足半圓的直線 使用格林後再扣除直線積分 過程會漂亮許多哦
刪除第五題,積分面積應該為曲線ABC上方的半月形區域
回覆刪除謝謝提醒,已修訂
刪除第四題,改為 x=atan(t)--->dx=asec²(t) dt 解答內a²改為a
回覆刪除謝謝提醒,已修訂
刪除第七題,倒數第二行應該是e的(x+2)的平方分之( x+2)的6次
回覆刪除對,已修訂
刪除第十題,的2cos(θ)e^(-4sin^2(θ))怎麼到下一步就變成0了,可以寫詳細的過程幫助理解~
回覆刪除它是奇函數且週期的闗係, 若看不出來,硬算還是可以積的出來的!!
刪除