105 學年度科技校院四年制與專科學校二年制
統一入學測驗-數學(B)
解答:$$6小時=12個30分鐘,1個細菌經過12次分裂,變成2^{12}=4096,故選\bbox[red,2pt]{(C)}$$
解答:$$假設其他三人平均月薪為a元,則(7\times 27000+3a)\div 10 = 57000\Rightarrow a=127000,故選\bbox[red,2pt]{(D)}$$
解答:$$3!\times 4!= 6\times 24=144,故選\bbox[red,2pt]{(D)}$$
解答:$$\cases{A(-1,2)\\ B(-3,-3)} \Rightarrow \overline{AB}中點D({-1-3\over 2},{2-3\over 2})=(-2,-{1\over 2}) \\\Rightarrow \overline{CD} =\sqrt{(3-(-2))^2+(-1-(-1/2))^2} =\sqrt{25+{1\over 4}} ={\sqrt{101}\over 2},故選\bbox[red,2pt]{(C)}$$
解答:$$ \cases{\csc \theta=1/\sin\theta \gt 0\\ \tan\theta =\sin\theta/\cos\theta \lt 0} \Rightarrow \cases{\sin\theta \gt 0\\ \cos\theta \lt 0} \Rightarrow \theta 在第二象限,故選\bbox[red,2pt]{(B)}$$
解答:$${ \left( \frac { 729 }{ 1000 } \right) }^{ \frac { 2 }{ 3 } }-{ \left( \frac { 27 }{ 343 } \right) }^{ \frac { -1 }{ 3 } }+{ \left( 5\frac { 4 }{ 9 } \right) }^{ \frac { 1 }{ 2 } }={ \left( \frac { 9 }{ 10 } \right) }^{ 2 }-{ \left( \frac { 3 }{ 7 } \right) }^{ -1 }+{ \left( \frac { 7 }{ 3 } \right) }^{ 1 }\\ =\frac { 81 }{ 100 } -\frac { 7 }{ 3 } +\frac { 7 }{ 3 } =\frac { 81 }{ 100 },故選\bbox[red,2pt]{(C)}$$
解答:$${ S }_{ 10 }=1\frac { 1 }{ 1 } +2\frac { 1 }{ 2 } +3\frac { 1 }{ 4 } +\cdots +\left( 10+\frac { 1 }{ { 2 }^{ 9 } } \right) =\left( 1+2+\cdots +10 \right) +\left( \frac { 1 }{ 1 } +\frac { 1 }{ 2 } +\cdots +\frac { 1 }{ { 2 }^{ 9 } } \right) \\ =55+\left( 2-\frac { 1 }{ { 2 }^{ 9 } } \right) =57-\frac { 1 }{ { 2 }^{ 9 } } =56+\frac { { 2 }^{ 9 }-1 }{ { 2 }^{ 9 } } =56\frac { 511 }{ 512 },故選\bbox[red,2pt]{(A)}$$
解答:$$f\left( x \right) ={ x }^{ 2 }+ax+1\Rightarrow f\left( \frac { -3 }{ 2 } \right) ={ \left( \frac { -3 }{ 2 } \right) }^{ 2 }+a\left( \frac { -3 }{ 2 } \right) +1\\ =\frac { 13 }{ 4 } -\left( \frac { 3 }{ 2 } \right) a=\frac { 1 }{ 4 } \Rightarrow a=2\Rightarrow f\left( x \right) ={ x }^{ 2 }+2x+1\\ \Rightarrow g\left( x \right) =f\left( x+1 \right) ={ \left( x+1 \right) }^{ 2 }+2\left( x+1 \right) +1={ x }^{ 2 }+4x+4 \Rightarrow g(1)=1+4+4=9\\,故選\bbox[red,2pt]{(C)}$$
解答:$$\frac { x-1 }{ x+1 } -\frac { 6 }{ 1-x } =\frac { 12 }{ { x }^{ 2 }-1 } \Rightarrow \frac { { \left( x-1 \right) }^{ 2 } }{ { x }^{ 2 }-1 } +\frac { 6\left( x+1 \right) }{ { x }^{ 2 }-1 } =\frac { 12 }{ { x }^{ 2 }-1 } \\ \Rightarrow \frac { { x }^{ 2 }+4x+7 }{ { x }^{ 2 }-1 } =\frac { 12 }{ { x }^{ 2 }-1 } \Rightarrow { x }^{ 2 }+4x+7=12\\ \Rightarrow { x }^{ 2 }+4x-5=0\Rightarrow (x+5)(x-1)=0 \Rightarrow x=-5(x=1違反分母不為0) \\ \Rightarrow {x-1\over x+1} ={-5-1\over -5+1}={-6\over -4} ={3\over 2},故選\bbox[red,2pt]{(D)}$$
解答:$$假設原長方形的長為a、寬為b \Rightarrow \cases{a+3=b+4 \cdots(1)\\ (a+3)^2=2ab \cdots(2)} ,\\由(1)\Rightarrow b=a-1代入(2) \Rightarrow (a+3)^2=2a(a-1)\\ \Rightarrow a^2-8a-9=0 \Rightarrow (a-9)(a+1)=0 \Rightarrow a=9 \Rightarrow b=9-1=8 \Rightarrow ab=72,故選\bbox[red,2pt]{(B)}$$
解答:$$令\cases{a=1/x\\ b=1/y},則\cases{{2\over x}+ {3\over y}=2\\ {4\over x}-{9\over y}=-1} \Rightarrow \begin{cases} 2a+3b=2 \\ 4a-9b=-1 \end{cases} \\\Rightarrow a=\frac { \begin{vmatrix} 2 & 3 \\ -1 & -9 \end{vmatrix} }{ \begin{vmatrix} 2 & 3 \\ 4 & -9 \end{vmatrix} } ,b=\frac { \begin{vmatrix} 2 & 2 \\ 4 & -1 \end{vmatrix} }{ \begin{vmatrix} 2 & 3 \\ 4 & -9 \end{vmatrix} } \Rightarrow x=\frac { \begin{vmatrix} 2 & 3 \\ 4 & -9 \end{vmatrix} }{ \begin{vmatrix} 2 & 3 \\ -1 & -9 \end{vmatrix} } ,y=\frac { \begin{vmatrix} 2 & 3 \\ 4 & -9 \end{vmatrix} }{ \begin{vmatrix} 2 & 2 \\ 4 & -1 \end{vmatrix} },故選\bbox[red,2pt]{(A)}$$
解答:$$-1\lt x\lt 3 \Rightarrow (x+1)(x-3)\lt 0 \Rightarrow x^2-2x-3\lt 0 \Rightarrow -x^2+2x+3 \gt 0\\ \Rightarrow \cases{a=-1\\ c=3} \Rightarrow a+c=-1+3=2,故選\bbox[red,2pt]{(C)}$$
解答:$$\cases{A(0,1)\\ B(-3,5)\\ C(a,b)} \Rightarrow \cases{\overrightarrow{AB}=(-3,4)\\ \overrightarrow{AC}= (a,b-1)};\\又\cases{|\overrightarrow{AC}|=10\\ k\overrightarrow{AC}= \overrightarrow{AB},k\lt 0} \Rightarrow \cases{a^2+(b-1)^2=10^2 \cdots(1) \\ {-3\over a}={4\over b-1}={1\over k}\lt 0 \cdots(2)},由(2) \Rightarrow \cases{a=-3k\\ b=4k+1} 代入(1)\\ \Rightarrow 9k^2 +16k^2=100 \Rightarrow k^2=4 \Rightarrow k=-2(k=2違反k\lt 0) \Rightarrow \cases{a=-3k=6\\ b=4k+1=-7},故選\bbox[red,2pt]{(C)}$$
解答:$$\overrightarrow { AB } \cdot \overrightarrow { AC } =\left| \overrightarrow { AB } \right| \left| \overrightarrow { AC } \right| \cos { \theta } =4\times 3\times \cos { \frac { \pi }{ 3 } } =6\\ \left( \overrightarrow { AB } +2\overrightarrow { AC } \right) \cdot \left( \overrightarrow { AB } +2\overrightarrow { AC } \right) ={ \left| \overrightarrow { AB } +2\overrightarrow { AC } \right| }^{ 2 }\\ \Rightarrow { \left| \overrightarrow { AB } \right| }^{ 2 }+4\overrightarrow { AB } \cdot \overrightarrow { AC } +4{ \left| \overrightarrow { AC } \right| }^{ 2 }={ 4 }^{ 2 }+4\times 6+4\times { 3 }^{ 2 }\\ =16+24+36=76={ \left| \overrightarrow { AB } +2\overrightarrow { AC } \right| }^{ 2 }\\ \Rightarrow \left| \overrightarrow { AB } +2\overrightarrow { AC } \right| =\sqrt { 76 },故選\bbox[red,2pt]{(B)}$$
解答:$$由題意可知該直線斜率為1,且過(1,3);因此直線方程式為y-3=1(x-1) \Rightarrow x-y=-2\\,故選\bbox[red,2pt]{(A)}$$
解答:$$f\left( x \right) ={ \left( { x }^{ 2 }+3x-1 \right) }^{ 2 }\left( { x }^{ 3 }-5{ x }^{ 2 } \right) \\ \Rightarrow f^{ \prime }\left( x \right) =\left[ 2\left( { x }^{ 2 }+3x-1 \right) \left( 2x+3 \right) \right] \left( { x }^{ 3 }-5{ x }^{ 2 } \right) +{ \left( { x }^{ 2 }+3x-1 \right) }^{ 2 }\left[ 3{ x }^{ 2 }-10x \right] \\ \Rightarrow f^{ \prime }\left( 1 \right) =\left[ 2\left( 3 \right) \left( 5 \right) \right] \left( -4 \right) +{ { 3 }^{ 2 } }\left( -7 \right) =-120-63=-183,故選\bbox[red,2pt]{(A)}$$
解答:$$\sin { \left( -960° \right) } =\sin { \left( -960°+360°\times 3 \right) } =\sin { \left( -960°+1080° \right) } \\ =\sin { \left( 120° \right) } =\sin { 60°=\frac { \sqrt { 3 } }{ 2 } },故選\bbox[red,2pt]{(D)}$$
解答:$$\cases{\frac { \pi }{ 2 } <\alpha <\pi ,\sin { \alpha } =\frac { 4 }{ 5 } \Rightarrow \cos { \alpha } =\frac { -3 }{ 5 } \\ \frac { 3\pi }{ 2 } <\beta <2\pi ,\cos { \beta } =\frac { 12 }{ 13 } \Rightarrow \sin { \beta } =\frac { -5 }{ 13 }} \Rightarrow \sin { \left( \alpha +\beta \right) } =\sin { \alpha } \cos { \beta } +\sin { \beta } \cos { \alpha } \\ =\frac { 4 }{ 5 } \times \frac { 12 }{ 13 } +\left( \frac { -5 }{ 13 } \right) \left( \frac { -3 }{ 5 } \right) =\frac { 63 }{ 65 },故選\bbox[red,2pt]{(D)}$$
解答:$$5\times 4\times 3=60,故選\bbox[red,2pt]{(B)}$$
解答:$$3\times (4\times 6\times 5)/ (10\times 9\times 8) ={360\over 720}=0.5,故選\bbox[red,2pt]{(B)}$$
解答:$$平均值\mu=(54+ 56+62+63+65)\div 5=60\\ \Rightarrow 變異數\sigma^2 = ((54-60)^2 +(56-60)^2 +(62-60)^2 +(63-60)^2 +(65-60)^2)\div 5 \\ = (36+16+4+9+25)\div 5 = 90\div 5=18,故選\bbox[red,2pt]{(A)}$$
解答:$$\cases{有兩相異交點\\ 頂點在第一象限} \Rightarrow \cases{判別式\gt 0\\ 圖形為凹向下} \Rightarrow \cases{16b^2-16a^2 \gt 0\\ a\lt 0} \Rightarrow a\lt 0, a^2\lt b^2,故選\bbox[red,2pt]{(A)}$$
解答:
$$y=-x^2+1=0 \Rightarrow x=\pm 1 \Rightarrow y=-x^2+1與x軸交於(1,0)及(-1,0)\\ 因此所圍面積=\int_{-1}^1 -x^2+1\;dx +\left| \int_1^2 -x^2+1\;dx\right| =\left. \left[ -{1\over 3}x^3+x\right] \right|_{-1}^1 + \left| \left. \left[ -{1\over 3}x^3+x\right] \right|_{1}^2 \right| \\ ={4\over 3}+\left|-{4\over 3} \right| ={8\over 3},故選\bbox[red,2pt]{(D)}$$
解答:$$與y軸相切,即x=0代入橢圓方程式\Rightarrow 4y^2-16y+a=0 的判別式=0,即16^2-16a=0 \Rightarrow a=\pm 16\\ \cases{a=16\\ a=-16} \Rightarrow \cases{{ x }^{ 2 }+4{ y }^{ 2 }-4x-16y+16=0 \\ { x }^{ 2 }+4{ y }^{ 2 }-4x-16y-16=0} \Rightarrow \cases{ (x-2)^2+4(y-2)^2=4 \\(x-2)^2+4(y-2)^2= 36} \\ \Rightarrow \cases{(x-2)^2/2^2+(y-2)^2=1\\ (x-2)^2/6^2+ (y-2)^2/3^2=1} \Rightarrow \cases{半長軸=2,半短軸=1 \\半長軸=6,半短軸=3,不合,與x軸有相交}\\ \Rightarrow a=16,故選\bbox[red,2pt]{(C)}$$
============================== END ============================
解題僅供參考,其他統測試題及詳解
老師,你22題的答案似乎錯了...變異數還要再除以5才是跟標準答案一樣..
回覆刪除謝謝你的提醒,已修訂了!
刪除