(一)直方圖適合連續性資料,各長條相連,可呈現整體資料分布情形;長條圖主要以分類資料呈現,長條間有間隔,圖型以分類資料呈現。
(二)P(X>60)=P(X−768>60−768)=P(Z>−2)=1−0.05÷2=97.5%P(X>60)=P(X−768>60−768)=P(Z>−2)=1−0.05÷2=97.5%
解:
解:年齡(X)沒有求償有求償總和18<X≤251876625325<X≤402285828640<X≤553806244255<X18633219總和9812191200⇒沒有求償有求償總和O1=187,O2=66,253E1=253×9811200=206.83E2=253×2191200=46.17O3=228O4=58286E3=286×9811200=233.81E4=286×2191200=52.19O5=380O6=62442E5=442×9811200=361.34E6=442×2191200=80.66O7=186O8=33219E7=219×9811200=179.03E8=219×2191200=39.979812191200{H0:求償與年齡無關H1:求償與年齡有關α=0.05
(一)拒絕區域R={χ2∣χ2>χ2df=3,α=0.05=7.81473(查表)檢定統計值χ2=8∑i=1(Oi−Ei)2Ei=(187−206.83)2206.83+(66−46.17)246.17+(228−233.81)2233.81+(58−52.19)252.19+(380−361.34)2361.34+(62−80.66)280.66+(186−179.03)2179.03+(33−39.97)239.97=17.98∈R⇒拒絕H0⇒有關(二)查表可知P(χ2df=3=12.8381)=0.005⇒P(χ2df=3=17.98)<0.005⇒拒絕H0⇒有關
解:
ixi(女)yi(男)x2iy2ixiyi135651225422522752512042601416161040432910184110201292945122514460512431441849516646163624710321001024320∑14646349525909516528⇒{s2x=∑x2i−(∑xi)2n=4952−1462/7=1906.86s2y=∑y2i−(∑yi)2n=59095−4632/7=28470.86sxy=∑xiyi−(∑xi)(∑yi)n=16528−146×463/7=6871.14(一)迴歸方程式ˆy=b0+b1x,其中b1=sxys2x=6871.141906.86=3.6;經直線經過(ˉx,ˉy)=(1467,4637)⇒b0=4637−3.6×1467=−8.94⇒ˆy=−8.94+3.6x⇒ixiyiˆyiyi−ˆyi(yi−ˆyi)213565117.06−52.062710.24251204174.6629.34860.8432910195.465.5430.6945129.062.948.645124334.268.7476.396465.460.540.297103227.064.9424.40∑146463463.02−0.023711.50⇒Sb1=√∑(yi−ˆyi)2n−2/√∑x2i−(∑xi)2/n=√3711.55/√4952−1462/7=27.25/43.67=0.624{H0:b1=0H1:b1≠0α=0.05⇒拒絕區域R={t∣|t|>tα/2,n−2=t0.025,5=2.571(查表)}檢定統計量t=b1Sb1=3.60.624=5.77∈R⇒拒絕H0⇒女性員工與男性員工人數有顯著相關(二)x0=21代入迴歸直線ˆy=−8.94+3.6x=−8.94+3.6×21=66.66其1−α=95%的預測區間為±tα/2,n−2×√MSE×√1+1n+(x0−ˉx)2s2x=±2.571×√3711.55×√1+17+(21−146/7)21906.86=±2.571×√742.3×√1.143=±74.89⇒預測區間為[66.66−74.89,66.66+74.89]=[−8.23,141.55]
考選部未公布答案,解題僅供參考
沒有留言:
張貼留言